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: , ABSTRACT

>

Presented is a new method of separating the zeros of a Finite
Impulse Response (FIR) filter producing an optimal digital filter
or surface acoustic wave (SAW) design implementation. Overviews of
zero extraction algorithms and of FIR filter design using the Remez
Exchange algorithm are presented (McClellan et al. 1973).

The computer aided design (CAD) procedure presented allows the
designer to specify the general filter characteristic which the
Remez algorithm translates to FIR time domain coefficients. These
coefficients are readily translated to the frequency (z) domain,
producing an Nth order polynomial in z. The characteristic
polynomial is factored to determine all roots or zeros using a

three-stage factoring program presented by M.A. Jenkins (1975). The

roots are optimally separated into two groups, each of which 1is

recombined to form mutually exclusive functions. The two
functions are then implemented as transducers of a SAW device or
as a two-processor digital filter. The concept may be extended

to more than two subgroups for multi-processor digital filter designs.
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CHAPTER 1
INTRODUCTION

Numerous techniques exist for designing and implementing
finite impulse response (FIR) filters. Many of these techniques
can be traced to antenna array design methods popularized in the
1940s and 1950s (Balanis 1982). Among the more prominent antenna
array design techniques are the methods by Fourier transform,
Schelkunoff polynomial, Dolph-Chebyshev, Taylor line-source
(Chebyshev Error) and Woodward. These have spawned many of the
popular contemporary FIR design techniques such as the Remez
exchange algorithm based on the Chebyshev Error method, popularized
by McClellan, Parks and Rabiner (1973) and non-iterative
eigenfunction synthesis design, introduced by Devries (1973) and
similar to Woodward's method. Another FIR design approach employs
a technique known as linear programming (Rabiner 1972a,b).

Each of these techniques will yield FIR transfer functions
which may be readily implemented using a surface acoustic wave (SAW)
device or a digital filter. The SAW filter, a two-transducer
device, requires that the transfer function be split in some fashion
between the transducers. The digital filter may be optionally
implemented using two (or more) processors to increase throughput

rate,
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The conventional approach to implementing the SAW device is,
\) basically, to construct one transducer such that it contains the
entire FIR and to construct the other transducer such that it

emulates a rect function. This imposes a requirement upon the first

g

transducer that it be capable of handling all of the dynamics

Kot oo SO

associated with the transfer function. Similarly, a single-processor
digital filter implementation demands that the processor be able to

handle a wide range of FIR coefficients, as well as all of them at

[ T T N S

once. These are not necessarily optimal implementations.
Some efforts to evenly split the transfer function between the

two transducers of a SAW filter have been made by Morimoto, Kobayashi

and Hibino (1980) and in work by Ruppel, Ehrmann-Falkenau, Stocker
and Mader (1984, 1985). 1In both cases, these teams split the

transfer function into groups of alternating zeros or roots of the

P ARAS

transfer function about the unit circle. Any attempts to further
optimize the filters were made at the expense of altering the overall

frequency response in a process called compensation.

D I R

This thesis presents an approach to near optimally split the

transfer function between the two transducers or processors without

(Sl o Ve

altering the overall frequency response. The approach seeks to
N minimize non-linear and finite wordlength error effects by reducing
the required tap range for each transducer, or the required range

of coefficients used in a fixed-point digital processor.
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CHAPTER 11
OBJECTIVE OF PROPOSED WORK

Optimal FIR Implementation
Via Two-Transducer Design

Generally, the word "optimal” implies having attained a most
favorable condition or degree. Many parameters must be considered
during the design of a SAW or digital filter. Addressed in this thesis

are those concerned primarily with filter order and coefficient dynamic

range.

FIR Coefficients Via
the Remez Algorithm

The first stage of the design is accomplished using the Remez
exchange algorithm (Remez 1957) to generate a "best fit" Chebyshev
polynomial to a set of frequency response specifications. The
approximation, and subsequent conversion to an impulse response, is
accomplished by the modified McClellan, Parks and Rabiner (1973)
program presented in Appendix A. The program has been altered to
permit the design of filters of up to an order of one-thousand. An
initial guess of optimal filter order is obtained using a formulation

presented by Vaidyanathan (1985), which states:

-10 log10 61 52 - 13

N

e 14.6AF




where:
Af = (ws - wp)/ZTr
wg = stop-band edge frequency
Wy = pass-band edge frequency
61 = pass-band tolerances
62 = stop-band tolerances

This Ne provides a starting point for the filter order in the program.
The program then iterates, increasing N each time, until the
specifications are met.

Once the FIR coefficients are found by the modified McClellan,
Parks and Rabiner (1973) program, they may be easily arranged as the
coefficients of a z-domain polynomial, i.e., the z-transform of:

a, n=0,1,2,.

-.,N
h(n) = h(t - nT) = { (2.2)
1] otherwise

is

N
H(z) = £ h(n)z™" (2.3)
n=0

where:

a = the coefficients generated by the program

At this point, the impulse response could be implemented as a single
SAW transducer or as a single processor digital filter. In order to

split up the response between two transducers (or processors), H(z)

can be expressed as:




L o = e

H(z) = N = Hl(z) Hz(z) (2.4)

This equation shows all of the poles of a finite impulse response filter
to be at z = 0. All of the filter's zeros may be found by factoring
the numerator. A judicious separation of the zeros (and poles) can
then be assigned to Hl(z) and Hz(z). the two transducers of the SAW
filter. In a similar fashion, the transfer function could be split

into H; N(z) for a DSP filter to increase speed and dynamic range.

Obtaining the Zeros of the Characteristic

This is the most difficult phase of the optimization. The
factoring of high order polynomials was the subject of considerable
effort by mathematicians during the mid-seventies. Of the many
techniques surveyed, the Jenkins and Traub (1970) algorithm, and
program by Jenkins (1975), appeared to be the best choice. This
algorithm employs a three-stage process to determine the roots of
an Nth order real polynomial. It is globally convergent and does
so very rapidly. The program is extremely well written and is
quite elaborate, to the point of compensating for specific machine
accuracy limitations.

The Jenkins (1975) program factors the H(z) numerator polynomial
and returns the real and imaginary portions of the roots of H(z).

The complex roots will always appear in one of two possible ways.

A set of roots may appear as complex conjugate pairs (quadratic




> =

.

factors), each with a magnitude of one corresponding to the |z| = 1

unit circle. These roots will always correspond to the stopband
zeros of a filter design. Another form in which they may appear is
as a set of two complex conjugate pairs arranged symmetrically about

the unit circle so as to satisfy the condition that:
2y 2% = 1 (2.5)

These zeros correspond to the passband zeros of the filter. A diagram
best illustrates these concepts (see Figure 1). Real roots may occur
on the unit circle or in a manner similar to the passband zero case.
Summarizing the above, zeros of H(z) will occur as first, second and

fourth order factors.

Selection of Zeros and Subsequent Reconstitution

Once the zeros of the transfer function have been determined,
they must be separated into sub-groups and recombined. A simple
algorithm which generates all possible combinations of N rdots taken
K at a time fs used to separate the roots and form the sub-groups.
A polynomial is constructed from each group by multiplying the roots
within its group and the split design is rated as to the
desirability of the design.

The criteria used in the selection process employed here seeks
to maximize the average tap or coefficient value, while minimizing

the range and variance of those same values. These qualities are

¢‘- .\"*;.".f
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desirable in SAW devices since we usually desire a maximum finger
overlap and want to avoid, as much as possible, large numbers of
very small tap weights which may increase diffraction effects. In
the case of digital filters, these problems translate to finite word
length problems and device dynamic range.

In order to evaluate the relative merits of one combination

over another, the following figure of merit is proposed:

Design FOM = —Z%- (2.6)
R, o
X X
where:
X = average of the tap weights of both transducers combined
R, = the range of the coefficients
oxz = the variance of the coefficients

The ratio yields a figure of merit used to rate a given design.
Obviously, this concept could be extended to more than two
sub-transfer functions for the digital filter case.

This thesis proposes to study low order filters using this
separation/reconstitution technique and to apply detected trends, if

any, in a general sense.

Tey w e
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CHAPTER III
FIR FILTER DESIGN

An excellent review of finite impulse response filter theory
is presented by Lawrence R. Rabiner and Bernard Gold (1975) and by
Rabiner, McClellan and Parks (1975). This review provides a
theoretical background for implementing the Weighted Chebyshev
Approximation filter design technique via the Remez Exchange
Algorithm (Remez 1957). That presentation draws upon the work of
Parks and McClellan (1973), who devised a general computer program
incorporating the above. Their program was used in this thesis
to provide the FIR transfer functions. An overview of the theory
leading from FIR theory to a brief program description is

presented. The following is adopted from Rabiner and Gold (1975).

FIR Filter Frequency Response Overview

A finite impulse response describes a system which can be

modeled by a difference equation in the form:
M br
y{n) = T (3 x(n - r) (3.1)
r=0 "o

Since the system output is the convolution of the system input,

x(n), with the system impulse response, h(n), the impulse response

can be readily seen to be:




10

bn
- n=0,1’2, ,M
_la
h(n) =] % (3.2)
0, otherwise

The above equation describes the discrete time domain coefficients of
the system FIR. This same response may be described in the frequency

domain by taking the Fourier transform of h(n) to obtain H(ejw):

H(ed®) = £ h(k) eIk (3.3)
Since h(n) is finite in length with respect to time, H(ejw) must be
infinite with respect to frequency. However, for discrete, sampled
systems, H(ejw) is periodic with respect to the sampling frequency,

ji.e.,:
H(ejw) = H[ej(w+2"m)] m=0, il, 12, oo (3'4)

which is periodic in frequency with a period of 2n. This fact

allows us to restrict our requirement to define H(ejw) in practical
filtering applications in terms of the sampling frequency, consisting
of N samples over a period equaling the length of the time domain
impulse response (without any augmenting zeros). It also allows us

to state that:

. N-1 .
H(ed®) = £ h(k) e dvk (3.5)
k=0

DR RN ALNLY : A 3- - ‘\.71"' - .; DA CAT ._“.._'- ....... LT -"'-_'.-_ .‘"\' .‘*v - -.'\' .“.\‘, \.'..\". ."
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The function, H(er), can be described in terms of its magnitude

and phase as:

H(ed¥) = + [u(ed)| eI0() (3.6)
or
H(ed) = B (eJ¥) I0(w) (3.7)

where:

H (e?”) = a real function

it

8(w) constrained to describe a linear phase characteristic,

j.e.,:
o(w) = - aw Mm<w<T (3.8)

with constant phase delay implied by the constant, - a. The function

can be written in trigonometric form as:
+ [H(e¥)| {cos (w) - J sin (ow)} (3.9)

In order to find a, equate the real and imaginary parts. Then, we

may describe cos (aw) and sin {ow) as:

: N-1
i_lH(er)l cos (aw) = I  h(n) cos (wn) (3.10)
n=0

and

- i

= v w

AR
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. N-1
+ [H(eI)] sin (aw) = £ h(n) sin (wn) (3.11)
n=0
and set up the ratio:
N-1
£ h(n) sin (wn)
sin _ . n=0
cos la,) - tan (o) = o1 (3.12)
z  h(n) cos (wn)
n=0
Cross multiplying:
N-1 N-1
Z h(n) sin (ow) cos (nw) - £ h(n) cos (aw) sin (nw) = 0
n=0 n=0
(3.13)
Using the trig identity:
sin (u-v) = (sin u)(cos v) - (cos u)(sin v) (3.14)
yields:
N-1
Z h(n) sin[(a-n)y)= 0 (3.15)
n=0

Equation (3.15) is in the form of a Fourier series. For equation
(3.15) to be valid for an odd symmetrical series (see Figure 2),

a and h(n) must be:

a= = (3.16)
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and:

h(n) = h(N-1-n) 0<n<N-1 (3.17)

In the case of an even, symmetrical series (see Figure 3), a will not
be an integer. The use of the fractional delay obtained here is of
primary significance when designing differentiators and Hilbert
transformers. These are not discussed here, but the reader is
referred to Rabiner and Gold (1975) for an in-depth discussion.

These values for a and h(n) hold for constant group delay and constant
phase filters. If constant phase delay (phase divided by frequency)

is not required, i.e.,:

. . . B . .
H(eI9) = + [H(eI?)| 90T = @) - 4 |y(edW)| oI(B-w) (3 1g)

where the phase delay is given by - %-+ o, then similar development
(Rabiner and Gold 1975) for an odd, anti-symmetric series (see

Figure 4) will lead to the result that:

a=%l (3.19a)
B=t7 (3.19b)

and

h(n) = -h(N-1-n) 0 <n < N-1 (3.19¢)
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Again, the case of an even, anti-symmetric series (see Figure 5) is
of primary interest in designing differentiators and Hilbert
transformers. Equations (3.16) through (3.19) suggest four general
classes that might characterize a linear phase finite impulse
response filter:

1. Symmetrical impulse response, N odd
Symmetrical impulse response, N even

Anti-symmetrical impulse response, N odd

S W N

Anti-symmetrical impulse response, N even
It is now possible to describe H(eI®) to account for these

possibilities in the general relationship:

H(ed®) = H(edv) I (B-ow) (3.20)

Rabiner and Gold (1975) next develop equations to define H(ejw)
in terms of H(ejw) for each of the above cases. The results of these

developments are summarized as follows:
Case 1: Symmetrical impulse response, N odd

(N-1)/2
pX a(n) cos (wn) (3.21)
n=0

H(ed?) =

with

a(0) = h[(N-1)/2], and

atn) = 2t ny forn =1, 2, L, (Ne1)/2
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which yields:

v T -_on

1 . i N (N-1)/2
H(ed?) = e Jo(N-1)72 T2 a(n) cos (wn) (3.23)
n=0

i

)

f Case 2: Symmetrical impulse response, N even

y ~s N/2

) H(ed®) = L b(n) cos [w(n-0.5)] (3.24)
. n=

, with

b(n) = 2h(N/2 - n), n=1,2, ..., N/2 (3.25)
. i N N/2

j H(ed*) = e Ju(N-1)/2 7% b(n) cos [w(n-0.5)) (3.26)
r n=1

N Case 3: Anti-symmetrical impulse response, N odd

“

N Ao (N-1)72

N H(ed") = X c(n) sin (wn) (3.27)
) n=}
X with
+ c(n) = 2h[(N-1)/2 - n], n=1,2, ..., (N-1)/2 (3.28)
) . . o (N-1)/2

) H(ed¥) = e'Jw(N 1)/2 eJ"/2 pX c(n) sin (wn) (3.29)
N n=1

’.
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Case 4: Anti-symmetrical impulse response, N even

o N/2
H(ed®) = £ d(n) sin [w(n-0.5)] (3.30)
n=1
with
d(n) = 2h(N/2 - n), n=1,2, ..., N2 (3.31)
. . . N/2
H(el@) = g Jw(N-1)/2 dm/2 757 4(n) sin [w(n-0.5)] (3.32)
n=1

Weighted Chebyshev Approximation

The frequency response of the desired system is completely
described by H(ej“). From the development in the first section of
this chapter, it is obvious that this description for each case can
be considered as a series of sine or cosine functions. These series
can be easily related to Chebyshev polynomials.

The Chebyshev polynomial represents an expansion of cos (mu) for
any value of m. We know that any real function can be represented
as a sum of sinusoids. These sinusoids are of the form cos (mu),
with m indicating the highest harmonic required to reconstruct the
original function. Of course, some functions require that m approach
=, Within given limits, however, it is possible to represent a
desired frequency response curve as a sum of Chebyshev polynomials

of finite length m. The Chebyshev polynomial expansions take the

following forms:
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m €os_mu (3.33)
E 0 1 - 1
: ' 1 cos u = cos u
: 2 cos 2u = 2 cos? u -1
E 3 cos 3u = 4 cosS u - 3 cos u

Letting z = cos (u), or u = cos'1 (z), then:
Chebyshev
m c0S mu Designation (3.34)
0 1 To(z)
. 1 2 TI(Z)
\ 2 22 - 1 T,(2)
3 423 - 3z Ta(z)
A recursive relationship emerges:
. T.(2) = cos [m cos™? (2)] = cos (mu), -1 <z<1 (3.35)

In essence, we are using a sum of Chebyshev polynomials to
curve-fit to the desired frequency response from zero to one-half
N the sampling frequency. Given the four cases discussed at the end

of the first section of this chapter, and using Chebyshev polynomials

N e

to represent the eries, the problem defaults to determining the
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scaling of the coefficients with respect to frequency. This process
is called "weighting" the approximation and is discussed in depth
by Rabiner and Gold (1975). It is reiterated here briefly.

For the four cases described in the first section of this

chapter, a general expression can be written to define H(e'%) as:

H(ejw) = e‘iw(“‘l)/z ej(‘ﬂ/Z)L I:I\(er) (3.36)

The exponent L will take on a value of either 0 or 1, depending upon
the case considered. Now, a table can be constructed which shows
values for L and the form of G(ejw) for the appropriate case of
symmetry and N (see Table 1). The previous discussion of the form
of the Chebyshev polynomial would suggest that the expressions for
a(ejw) may be converted to summations involving cosines (as opposed
to sines) using ordinary trigonometric identities. Once this is
done, Table 1 can be rewritten in terms of functions which are fixed
functions of w, which will be referred to as Q(ejw), and as
functions of the cosine series, which will be referred to as P(ejw)

(see Table 2). For cases 2 through 4, Q(ejw) is constrained to be

zero at either w = 0 or w = m, or both.
Now, it is possible to set up a relationship between the
desired response at given frequencies to within a prescribed accuracy.
To do so, let D(ejw) represent the desired response of the filter
and let N(ejw) represent the weighting on the allowable error as a

function of frequency regions or bands (i.e., the ratio of the




23

1=
‘no _ uaAd N ‘asuodsau
((5°0-u)m) uts (u)p Nwz = As.ﬁ,ovm l as|ndwy [ed(433umks-13uy :p 3se)
(um) uts (u)d ﬁmc = (_+3)H 1 ppo N ¢3dsuodsau
: - of /7 as(ndwy (edajaumfs-Luy :¢ ase)
2/(1-N)
[(G*0-u)m 1=u uaAd N ‘asuodsau
(G°0-u)™I so3 (u)q Nwz = As.nmvm 0 as|ndul |eILJ3uMAS :2 3se)
U s05 (ule 0=t~ 5 ppo N ‘asuodsau
(um) (u) T = e 0 as|ndwy |ed51432umAs :] 3se)
2/(1-N) v
A3_..va 1

SISV ¥3ILTI4 ¥NO04 3JHL ¥O04 7T 40 NOILINI43Q

O s gt s -a -

T 378vl

W



24

0=u
_ 2 . UaAd N ‘asuodsau
(um) 50> (u)p 4 - Aa.nmvm (@) uss as|ndwi [edtajaumhs-L3uy :f Ise)
1-(2/N) .
(um) sod (u)> om: = (me9)H ™) uls PPO N *3suodsad
= lof®I7 ( : as|ndwi |edtuajaumhs-juy g ase)
2/(€-N)
(um) 503 (u) om: - (09) 2\ <oo uana N ‘asuodsas
q = Lo ) asindut |edtajaumhs :7z ase)
1-(2/N) v R
(um) s05 (u)e om: - (o) I ppo N *3suodsad
= \mg®J7 as|nduwt jedLu33umhs :T ase)
2/(1-N) .
A3.ﬁwv& A3ﬂ0vO
S3SYD ¥3LTI4 ¥NO4 3IHL W04 QINIHIA (y3)d ANV (,(2)D
¢ 314Vl
LA e DR AR . o | AT W PR, U P a7 o~ ARl

S e

AN -



e

s s

[+ -
O LT

RO | RO L 44N

i, 5845 %

oy
- e

-

v T

ALY

25

stopband ripple to the passband ripple). With these functions, the

error for a given approximation can be calculated as:

E(e3¥) = w(eI®) [p(ed¥) - H(edw), (3.37)

with H(ejw) being the trial design. ﬁ(ejw) can be separated into its

two symbolic parts to yield:

E(ed?) = w(eI®) (p(ed?) - P(ed®) q(ed¥); (3.38)

Q(e?*) may be factored out of the quantity in parentheses since it is

a fixed function of frequency. This yields:

E(e39) = W(ed) q(e?) [D(e¥)/q(e) - p(ed®))]  (3.39)

Defining [W(el¥) Q(ej“)] as W(ed?), and [D(ejw)/Q(ejw)] as D(ed®),

equation (3.39) may be rewritten as:

E(ed®) = W(ed®) [(D(ed?) - P(ed®); (3.40)

The problem now defaults to finding the values for the coefficients
of the Chebyshev polynomials [P(ej“)] such that the maximum error
over each specified frequency band is minimized. To accomplish this,
the Alternation Theorem is used. It states (Rabiner and Gold 1975):

Theorem: If P(e®) is a linear combination of r cosine
functions, i.e.,:

P(el?) = rz aln) cos (nw) (3.41)
n=0
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then a necessary and sufficient condition that P(ejw) be the unique,
best weighted Chebyshev approximation to a continuous function a(ejw)
on A, a compact subset of (0,m), is that the weighted error function
E(ejw) exhibit at least (r+l) extremal frequencies in A; i.e., there
must exist (rfl) points w3 in A such that Wy < Wy < <0y and
such that E(eri) = -E(eri+1), i=1,2, ..., r, and |E(eri)| =
max [E(ejw)] for all w in A.

Rabiner and Gold (1975) show that for the four cases of filter
design presented, that the number of extremal frequencies in ﬁ(ejw)

obey the following constraints:

Case 1: No < (N+1)/2
Case 2: N, < N/2
(3.42)
Case 3: Ne < (N-1)/2
Case 4: Ne < N/2

The extremal frequencies, or extrema, are divided up between the stop
and passbands of the filter and they describe the peaks and troughs
of the Chebyshev approximation. A diagram best describes the
relationship of the extremal frequencies and the shape of the
Chebyshev approximation waveform (see Figure 6).

There are several ways in which to obtain the extremal
frequencies of ﬁ(ej“). The first method, described briefly, was
originally proposed by Herrmann and Schuessler. The method

capitalizes on the fact that a local maxima (+8) or a local minima

------

..............................

.......
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(-8) occurs in the region of an extrema, and that the derivative
is zero at that point. Two equations in Ne with two Ne unknowns
(Ne impulse response coefficients and Ne frequencies where ﬁ(ejw)

obtains an extremal value) are:

~ Juy § Juy
H(e ) = + ————-+ D(e ) i=1,2, ..., N (3.43)
- Jwi e
W(e ')
and
~ jw
—-L—L———u-d zue =0 i =1, 2, e s ey N (3‘44)
e
w Fw

where E(ej“ﬁ) = + §, and these are solved iteratively for values of
Ne‘ This procedure works well for filters with an order about 60
or less.

Another method used is one devised by Hofstetter, Oppenheim and
Siegel which is called the Polynomial Interpolation Solution by
Rabiner and Gold (1975). The basic idea behind this algorithm is
that an initial guess of the extremal frequencies is made and ﬁ(ejw)
is evaluated at these points. The algorithm then searches for the
actual extrema found during that trial and iterates again, this
time using the newly found extrema. Eventually, the process converges
to the minimum ripple attainable for a given Ne’ Very large order

filters can be designed by this method. The Polynomial Interpolation

Solution technique is very similar to the last technique to be

described, the Remez Exchange Algorithm.
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The Remez Exchange Algorithm

We have seen that the goal of obtaining the desired response
6(ejw) is met by obtaining the approximating function P(ejw) which
best minimizes the weighted error function E(ejw). The Remez
Exchange Algorithm accomplishes this by using a dense grid of
frequency points to find the extremal frequencies. An initial
guess as to the location of the (r+l) frequencies is made, similar
to the Polynomial Interpolation Solution method. Then, the error
function is forced to have a value of + §. The signs alternate,
since the extrema are expected to alternate above and below the
indicated level by 6 in the final design. These constraints
generate the separate error function [E(ejw)] equation for each

extremal frequency, given from equation (3.40) as:

A J ~ J J
W(e wk) [D(e wk) - P(e w")J = (-1)k § k=0,1, ..., r (3.45)

which generates an (r+l1) x (r+1) matrix of equations to solve.
Remez (1957) found an alternative closed-form solution (appropriately
modified for the current variable set) to be:

~ jwr

~ jwo ~ J'wl
. - aoD(e ) + alD(e Y+ ...+ arD(e )

—3a T — - (3.46)
ao/N(e % . al/w(e 1) + ...+ (17 ar/w(e ")

where:

r
a = 'Eo T?;_:_ij' (3.47)
#k
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and

e X; = COS w; (3.48)
p. At this point, the optimum § for a given set of extremal
.
: frequencies is known. The next step is to form the approximating
= function P(ej“’) along the r extrema points by using the barycentric
form of the Lagrange interpolation formula:
#
“ r-1 ( Bk )

I (=—)C

; T X = X k
. p(el¥) = K0 k (3.49)
! r‘l Bk
-, z -
: k=0 (x xk5
%
where:

" r-1 1
; B = I (3.50)
: K gm0 Dy %)

i#k
‘ and
Ll . jw

=0 M) - (-D¥—%— k=0,1,..., r1 (3.51)

- ~ ka
: wie )
’
" A; = €OS Wy
"
@
4

X = COS w
)
?
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o A W S R S T Y
-~-.0.'-.\."-.\ .-.. » ~ R Y -




31

Once the approximating function P(er) has been formed, it is
possible to evaluate E(ejw) along a dense set of frequencies which
are equally spaced along the frequency axis from zero to one-half

the sample frequency. If:
[E(e3)] <6 (3.53)

then an optimal approximation to the desired frequency response has
been found. If the weighted error function exceeds &, then a new
set of (r+l) extremal frequencies is chosen by selecting the peaks
of the error curve. This process quickly forces § to converge to
its maximum value for a given number of extremal frequencies. If
there are more than (r+l) extrema in E(ejw), then the new number of
extrema is retained and used in the next iteration of the process.
The final impulse response coefficients are obtained by
performing a 2M point Inverse Discrete Fourier Transform on P(ejw).

M

where 2" > N. Note that this N is the filter order plus 1.




I CHAPTER IV
‘ ZERO EXTRACTION TECHNIQUES

. The problem of extracting the zeros of a polynomial turns out
to be far from simple, sparking the interest of mathematicians

and scientists for centuries. With the advent of the digital

f computer, the factoring of high order polynomials has become
4
{ possible, though not entirely without grief. Some of the more
., prominent approaches and associated problems are briefly discussed
2 here.
:
' Polynomial Theory
5 A polynomial in z is an equation which takes the form:
. N N-1 2

apz” tay 7t tazt tagz+ag (4.1)
r
f or, alternatively,

N

g r az" (4.2)
. n
‘ n=0
¢
’ where the coefficients ays ay_y» +--» A, are real numbered constants.
N - This form of equation is readily identified with the equation

describing the finite impulse response filter z-domain representation.

N This polynomial can be expressed also as a product of its roots or

2eros as:
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N

n (z- z,) (4.3)
n=1

Notice that for a polynomial with N roots, there are N product-form

terms and N+1 summation-form terms. This can cause some confusion

at times. For example, the McClellan, Parks and Rabiner (1973)

program discussed in the previous chapter displays a filter order of

N when, in fact, N coefficients are actually meant.

Zero Characteristics of FIR Filters

When described by a polynomial in the z = e3® plane, FIR filter
zeros plotted in the z-plane always have a distinct appearance.
A1l of the stopband zeros will occur exactly on the unit circle
and will always occur as complex conjugate pairs, unless they are
real. The complex passband zeros will always occur in sets of
four, one inside the unit circle, another outside such that the
magnitude of one multiplied by the other will equal exactly one.
This pair also has corresponding complex conjugates, hence the set
of four.

Due to the nature of the Chebyshev polynomial approximation
of the FIR frequency response, there are no repeating zeros or
multiple roots to contend with. However, this does pose problems

in other factoring situations and is discussed briefly.

Factoring Methods

Several unique approaches to zero extraction exist. The first

was by none other than Sir Issac Newton (1642-1727). Since that
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time, other algorithms by Bairstow, Lin, Muller and Birge-Vieta

have arrived (Ralston and Wilf 1960). These algorithms have the
relative liability of not being able to assure convergence for any
initial guess of a root. Other methods which virtually assure
convergence within a class of problems are methods of Lehmer,
Graeffe and Bernoulli. The Bisection method is probably the most
crude method of root-finding, relying upon a purely iterative process
of testing discrete points in the z-plane until the roots are

found. The latter four cases have the disadvantage of slow
convergence. There exist several matrix-oriented computer program
packages, such as EISPACK (Smith et al. 1976), which are designed

to find the eigenvalues of a matrix, another means of finding the
zeros. However, these programs are extremely memory-inefficient.
The method adopted for this thesis project is the Jenkins and Traub
(1970) method which combines many of the above techniques, as well
as ones by Traub, into a very complex algorithm and computer program
which is convergent for a wide class of problems and is very

machine-efficient. Discussed briefly are the more prominent methods.

Newton's Method
The process of finding a root by Newton's method is perhaps
the best known and most easily understood (Blomquist 1968). It
is based on beginning with an initial guess for the root and

jteratively converging to the actual root with the method of steepest

descent. The following relationship describes the method:
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Zoay = 2, - Pz)/PH(z,) (4.4)

where z is the current guess of the root, P(zn) is the value of
the polynomial at Zps Pl(zn) is the value of the derivative of
P(zn) and z,,, is the next guess (or, eventually, the root). This
process may be carried out iteratively to any practical, desired
accuracy. The root is obtained when the difference between Zo41
and z, is less than the required accuracy. Figure 7 graphically
shows how successive iterations ultimately converge to the root.
Problems with this technique occur since it has no direct way
of determining if a multiple root exists and the method does not
always converge to the root. An example of how the method may
fail is shown in Figure 8. This case demonstrates that choosing
an initial guess too far from the actual root may prevent convergence.
In this example, the method will oscillate between z, and s since
each point represents the other's successive approximation. The
method also requires the use of complex arithmetic in evaluating

P(zn) and Pl(zn) in the case of complex roots, which further limits

this method.

Bairstow's Method
Prior to the Jenkins and Traub (1970) approach, the Bairstow
method was regarded as one of the best techniques for extracting

zeros. The primary advantage which this method has over Newton's

Method is that it uses only real arithmetic to evaluate the
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polynomial. The basic idea is to use Newton's Method to find unique
quadratic factors to the polynomial using only real arithmetic,
remove the quadratic via synthetic division and use the well-known
quadratic formula to extract the complex roots of the quadratic
factor. This technique automatically locates multiple roots, since
it deflates the polynomial by an order of two for each quadratic
factor found.

Simons, Weeks and Kotick (1983) developed an elegant formulation
which best expresses Bairstow's Method. The algorithm begins with

a polynomial in the form of:

_ N N-1 N-2 1 )

PN(zn) = ayz +ay gz +ay_,? tootagz o tagz (4.5)
Newton's Method is used to approach the root by using equation (4.4).
However, Bairstow's Method evaluates PN(z) and its derivative(s) at
the pair of complex points z, and zn* by using only real arithmetic

as follows:

N n
Let PN(z) = I a,z (4.6)
n=0
Let the quadratic factor take the form:
2
2o taz +B (4.7)

where:
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and

B = 02 + wz

Then, dividing PN(z) by this quadratic factor yields a polynomial

of order N-2 with a remainder Rlz + Ro’ i.e.,

PN(z) (2] Rlz + Ro (4.8)
- 5= P z) + - 4.8
zZ +tazt+B N-2 2 taz +8

Multiplying both sides by the quadratic factor yields:

Py(2) = Py_p(2) (2% + az +8) + Rz + R (4.9)

Obviously, if Rlz + Ro = 0, then the roots are:

W
—a e - 48 (4.10)

by the quadratic formula. Therefore, the problem defaults to choosing
values for a and B such that the remainder is zero. R1 and Ro can

be related to PN(z) by the following:

R

3 e e
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aNzN'2 + (aN-l'“aN-l)ZN-3+[3N-2'aaN-1+(a2+B)aN]ZN-3+‘"
2

z° +az +8 r;NzN + aN_lzN'1 + aN-ZZN;Z + aN_3zN'3 + ...

aNzN + czaNzN'1 + BaNzN'2

(aN_l-aaN)zN'1+(aN_2-BaN)zN'2+aN_3zN'3+...

(aN_l-aaN)zN'1+(aaN_1-aaN)zN'2+(BaN_1-aBaN)zN'3

. IaN_z-aaN_1+(a2-B)aN]zN'Z

+(aN_3-BaN_1+aBaN)zN'3+...

(4.11)
Letting:
: by-2 = ay
' by-3 = ay-1 - Ay = 8y - by,
¢ (4.12)
: bN_4 aN_z - aNa - aN-la - aNG
¢
= -2 " by.p - by3e
b a recursive relationship emerges:
Pr-2-n = 3N-2-n ~ BON.p-n ~ ®Py_3-p (4.13)
Iterating to n = N yields:
\
: ....... PR S AL PR N W "-q ''''''''''''' "'-' w” $ NN e e e e e N St e ARV IS IS
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b_; = a, - 8b; - ab, (4.14)
b, = a, - 8b, = ab_y
Since
R,z + R - -
A0 = b_ 27l 4 b 2 (4.15)
25 +taz +8
then
R,z + R = (z2 + az +8) (b 2l +p 2'2) (4.16)
1 (] -1 -2 )
ab_2 Bb_1 Bb_,
=bjz+b,tab+—5+ =+ 2 (4.17)
Equating like coefficients:
Ry =b,y
Ry = b_2 +ab_y
(4.18)

The polynomial PN(z) and its derivative(s) may now be evaluated at

any pair of complex conjugate points specified by the chosen quadratic
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factor. Newton's Method now follows easily, unless PNl(z) evaluates
to zero. If this is the case, multiple roots exist for the chosen
pair, o + jw. In this case:

Py(2)

~ (4.19)
Py (2)

is replaced by successive derivatives

Py (2) (4.20)

until PNM+1(zn) # 0. Now the root, as well as its multiplicity, is
known.

The final step of the process is to remove each quadratic factor
from the polynomial (polynomial deflation) using synthetic division.
Bairstow's Method is again applied to the resulting polynomial until
all of the roots are found.

The disadvantage of Bairstow's Method lies in the necessity
to make a reasonably accurate guess of the quadratic factor. A bad
guess can prevent convergence in the same manner as happens in
Newton's Method. Both of the above processes suffer from machine
rounding problems which occur with successive deflation of the

original, high ordered polynomial.
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Jenkins and Traub Method

This is a highly complex method which attempts to incorporate
all of the above advantages while avoiding the mentioned pitfalls.
The program incorporating the algorithm was the subject of Jenkins'
doctoral dissertation (Jenkins 1975). The process incorporates
three stages of zero extraction using Bairstow's Method, Newton's
Method and three shifting techniques used to hasten convergence.

The method assures rapid convergence for a wide class of polynomials.
Zeros are removed in roughly increasing order of modulus; i.e., the
zeros closest to the origin are generally removed first, the ones
furthest from the origin are removed last. This is done in order

to reduce the instability problems which may accompany the deflation
process. A discussion of the variable shift algorithm is beyond the
scope of this thesis and the reader is referred to the Jenkins and
Traub (1970) paper for a formal theoretical treatment.

One of the interesting aspects addressed by Jenkins in writing
the program is that it takes into account the specific capabilities
and limitations of floating point manipulations on a given machine.
This feature allows the program to be customized to a specific machine
in order to achieve the highest possible zero extraction accuracy
for that machine (using the Jenkins and Traub algorithm).

The program in Appendix B appears to be the current state-of-

the-art in non-matrix methods of polynomial factoring. For example,

the 1986 IMSL math libraries make use of this algorithm for their
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zero extraction approach. Schelin (1983) also indicated that this
was the prime non-matrix type algorithm as of 1982.

In practice, the program handles up to roughly an order of
one-hundred with 1ittle difficulty. Convergence problems begin to

occur with increasing frequency beyond this 1imit, based upon

actual tests.
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CHAPTER IV
ZERO SEPARATION AND RECONSTITUTION

The prime reason for judicious zero separation is based on a
desire to increase the dynamic range of the transducer or DSP device
without sacrificing any of its transfer characteristics. The
dynamic range is largely affected by relatively small FIR
coefficients. These small coefficients correspond to small area
overlaps of fingers in SAW devices and to smell register coefficients
in DSP filters. The net effect in the SAW device is for the small
overlap to appear more like a point source wave generator as opposed
to a desired planar wave source. Second order effects also begin to
become more predominant for this situation. Similarly, DSP filters
suffer from rounding effects when forced to sum products of very
large and very small filter coefficients, even when floating-point
érithmetic is used. The following DSP example demonstrates this
problem.

1. &egothe internal number representation be from - 1.00 to

2. Let the system function be:

y(n) = (1.00) x(n) + (0.02) x(n-1)

which is an FIR filter with coefficients 1.00 and 0.02.
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3. Llet x{0) = x(1) = 0.20 and x(-1) = 0.0, then it follows

that:
y(0) = (1.00) (0.20) + (0.02) (0.00) = 0.20
y(1) = (1.00) (0.20) + (0.02) (0.20) = 0.204 (actual)

However, y(1) = 0.204 will be truncated to 0.20, since the internal
precision only allows two decimal places.

In practice, it may not be possible to completely avoid the
problems associated with dynamic range, but it is desirable to attain
the best dynamic range for a given design. The above example
demonstrates that three qualities of the FIR coefficients bear close
scrutiny during the design process: the average, the variance and

the range of the coefficient values.

Statistical Qualities

The highest average value for the FIR coefficients provides the
greatest average finger overlap on a SAW device, thus the highest
average energy injection into (or removal from) the substrate.
Similarly, the highest average coefficient value in a DSP filter
produces data with the highest average value within the register
working ranges. Since sign changes may be handled easily in either
type of device, the average is taken of the absolute value of the

FIR coefficients. The average is defined as:

M2

. [h(n)| (5.1)
N

A

x=1l
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The variance of the FIR coefficients indicates how much they
change on the average. In other words, the variance indicates how
smooth the overall envelope is. Again, since sign changes may be
handled easily in either type of device, the variance is taken of
the absolute value of the FIR coefficients. The variance is defined

as:

N N 2
AN X Zl Ih(n)] - { £ |h{n)|}
n n= =1
o = N (N- IT (5.2)

The range of the coefficients is an absolute indication of now
far apart the minimum and maximum coefficient values are. Since the
coefficients are normally scaled to a maximum of 1.0, the range will
provide an indication of the minimum coefficient value. As in the
above two statistical qualities, the range is taken for the absolute

coefficient values. It is defined as:
A
Range = |h(n)max[ - [h(n)minl (5.3)

These three qualities allow the designer some means of rating one
given design against another quantitatively, leading to a design

Figure of Merit (FOM).

The Fiqure of Merit (FOM)

A design objective which requires the best split of the zeros

of the transfer function requires that the designer be able to rate

]
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one design over another until the best is found. This can be done
by assigning an FOM to the design based on the three statistical
qualities discussed above. The goal addressed here is to split the
zeros between two transducers or processors such that a gain in
available dynamic range is found. To do this, the following procedure
relating the combined transducer coefficient average, variance and
range values to a figure of merit is proposed:

1. Normalize all hl(n) coefficients to 1.0 maximum.

2. Normalize all hz(n) coefficients to 1.0 maximum.

(NOTE: For the special case where all of the FIR
coefficients are implemented by h,(n), then
h2(n) is set to 1 to represent th& impulse
function since the convolution of the impulse
response with an impulse is the impulse
response. )

3. Form an array consisting of |h1(n)[.

4. Concatenate the lhz(n)l values to this array.

5. Find the average (X), variance (02) and range of
the newly-formed array.

6. Apply the relation:

FOM = T—*— (5.4)

o~ - Range

This equation reflects a desire to maximize the average while
minimizing the variance and range of the coefficient values. It

provides the designer with a means of rating one set of split zeros

versus another.
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Splitting the Zeros

In order to determine if an optimum zero-splitting pattern
might exist, all possible combinations for distributing the zeros
must be made and each combination tested using the FOM procedure.
This process is very tedious but may be readily implemented on a
computer due to the iterative nature of the process. Since

there are:

N/2 NI

T - (5.5)
k=0 R (N-KJ2

total, nonfrepeating combinations, the process has a practical
computational upper limit of about FIR order N = 40 (which has over
1011 combinations) on a VAX 11-750. However, equations of low order
may be used to model any trends applicable to the higher order

cases encountered in SAW devices.

Computer Implementation

Appendix C shows a listing of the program COMBO used to generate
(Beckenbach 1964) and rate all of the combinations of zeros provided
by the Jenkins (1975) program. These zeros are the result of
factoring the frequency response provided by the McClellan, Parks
and Rabiner (1973) program.

COMBO first generates an array consisting of all of the zeros
(complex conjugate pairs or reals) to be placed in Hl(z), while all

others are assumed to be placed in Hz(z). The program insures that

S R I, W P R B P N AT, S
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for responses which contain five real zeros, a sufficient number of
combinations occur. Once a combination has been specified, program
control is passed to the zero reconstitution subroutine.

The reconstitution subroutine POLYRECON is responsible for
multiplying the appropriate zeros together to form a test case
Hl(z) and H2(z). This algorithm uses either a real root to form
a linear factor or a complex conjugate pair to form a quadratic
factor. A1l arithmetic performed is real. The Hl(z) and Hz(z)
arrays are readily converted to scaled hl(n) and hz(n) arrays.

The arrays are combined as described in the FOM procedure, the statis-
tics are performed by the HSTAT subroutine and an FOM is assigned.
Next, the FOM is compared to the FOM of the previous design and

a decision is made as to which is best. If the new design is best,
those results are stored and the program proceeds to iterate again.

Upon completion, the results are passed back to the calling routine

for further analysis.
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CHAPTER VI
COMPUTER AIDED DESIGN APPLICATION

The Solid State Devices Lab group at the University of Central
Florida, headed by Dr. Donald Malocha, uses a computer analysis
system called SAWCAD, developed at UCF, to design SAW filter
devices. Added to this program are the McClellan, Parks and
Rabiner (1973) (Remez) program, the Jenkins (1975) zero location
program and the Optimizing program discussed in Chapter V. The
following is a brief discussion of the use of the added features
to SAWCAD. The complete SAWCAD package is not discussed here.
Further information on other aspects of SAWCAD can be obtained by
referring to Richie (1983).

A listing of the main menu is shown in Figure 9. A filter
design is initiated by selecting the (C)hebyshev [REMEZ] option to
the main menu. The program proceeds to the McClellan, Parks and
Rabiner (1973) program which has been somewhat modified. The
data entry routine consists of an interactive session between the
computer and the designer. During this session, the designer is
asked to specify the filter type (i.e., bandpass, differentiator
or Hilbert transformer), the number of distinct frequency bands up

to f /2, the start and stop frequencies of each band, the

sample
maximum dB level in each band and the maximum allowable ripple in

the primary passband (multiple passband designs are possible).
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Once frequency range, function and amplitude information is
entered, the program makes an initial guess of the required filter
order and initiates a design. If the design fails to converge to
the required specifications, the filter order is increased and the
process is repeated until convergence is obtained. Once a valid
design is found, the design report is printed and control is passed
back to the SAWCAD main menu.

At this point, the impulse response coefficients exist in
memory only. The SAWCAD (W)rite function is selected and a disk
file containing the impulse response coefficients may be written.
This step is highly recommended. Control passes back to the SAWCAD
main menu.

Any number of options are now open to tie designer. The
obtained response could be used immediately with other SAWCAD
functions if desired (i.e., FFT, Graphics analysis, etc.). The
next option we shall concern ourselves with here is the (Z)ero
Extraction option. Selecting this option requires no further
input, since the program calls the Jenkins and Traub program to
factor the z-transform of the impulse response. The program
returns the zeros and places them in the amp and phase variables
of the SAWCAD program. The designer must be aware that the impulse
response is no longer in memory!

Next, the optimum split for low order designs can be found

using the (S)plit Transducers selection on the SAWCAD main menu.
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s . No further user input is required since the program iterates until

the best split design is found. Once found, the program prompts

the user for transducer 1 and 2 file names under which to save the

K impulse response coefficients.

F Generation of the design is now complete. It may be checked
by multiplying the transducer 1 and 2 data files together and

} comparing the product with the original response generated by the

3 Remez method. These comparisons may be done graphically using the

powerful graphics and FFT facilities of the SAWCAD environment.
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CHAPTER VII

RESULTS

In an attempt to determine a general algorithm applicable to
filters of any order or type, eight different low-order test filters
were designed. Four of the filters were low pass designs and four

were high pass. The input design specs appear in Table 3.

The designs were made using the Remez technique, factored by
the Jenkins (1975) program, and were subjected to the optimizing
program to test all possible split designs. The composition of each
transducerlwas recorded to reflect the number of stopband and passband
zeros, and whether these zeros were real or complex. These results
are tabulated in Table 4.

Careful study of the results does not indicate any clearly
emerging pattern. In three out of four of the cases with very
narrow passbands (LP1, HP1 and HP4), the passband zeros all appeared
on one transducer accompanied by several stopband zeros. However,
LP4 passband zeros were split between the two transducers. The
other cases did not produce results which might indicate a
predictable pattern.

Another test was devised to test and rate a conventional
no-split design, a strictly passband-stopband split, the "alternating

zero" algorithm employed by other design groups (Morimoto et al.
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1980 and Ruppel et al. 1984), and the split algorithm presented
here. The HP1 filter spec was arbitrarily chosen as the subject of
the test. Figure 10 shows the overall frequency response of the
HP1 filter.

The conventional no-split design yielded a figure of merit
(FOM) of about 2.5214, whereas the passband-stopband split (i.e.,
all passband zeros on one transducer and all stopband zeros on the
other) yielded an FOM of about 3.588. Figures 11 and 12 show the
frequency response of each transducer. The passband transducer
shows nearly unity gain at 0 with a gradual rolloff in the region
of fo’ a very difficult response to implement on a SAW device.

The "alternating zero" approach yielded a FOM of about 6.5756.
This shows an improvement in the quality of the design as compared
to the passband-stopband split method. Figures 13 and 14 show the
frequency response of each transducer. The zeros are clearly
orthogonal. Figures 15 and 16 show the impulse response represen-
tations. This design does appear to have merit in the case where
a fifty-fifty split is highly desired.

The technique presented here produced a design with a FOM of
about 9.753. Figures 17 and 18 show the frequency response of each
transducer and figures 19 and 20 show the corresponding impulse

response plots.

The last two designs do not appear to pose fabrication problems

which might plague the passband-stopband split design case. As a
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: ’ check of the split, the frequency responses of the last design were
‘T multiplied together via SAWCAD and replotted. That plot is exactly

the same as the original frequency response in Figure 10, as

expected.
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CHAPTER VIII

CONCLUSIONS

The technique presented in this thesis of optimally splitting
the zeros of the transfer function shows considerable immediate
promise for low order (N less than 40) filter designs. An algorithm
permitting the split design of high order filters has not become
readily apparent, although the presented "all-combinations" technique
may still be used if limits are placed upon the transducer sizes.

For example, specifying a fifty-fifty split design significantly
reduces the number of combinations which must be tested. Future
efforts in this area must focus upon a more efficient search criteria
or be content to accept less than optimal results, as in the
"alternating zero" approach. The concepts presented here may be
extended to generate multi-transducer splits, with primary utility

in large ordered digital filter implementations.

In spite of the limitations of the technique used here, it is
obvious that a "best split" design of an FIR filter transfer
function exists based upon the average size, variance and range of
the resulting impulse response coefficients. The "alternating zero"
split approach (Morimoto et al. 1980 and Ruppel et al. 1984), the
only other‘method published to date, exhibited a Tower FOM when
compared to the split found by testing all possible combinations,

based upon the stated criteria. Careful study of figures 15, 16, 19
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and 20 (shown in Chapter VII) demonstrates that the presented
technique does, indeed, produce larger tap sizes for a given transfer
function than the "alternating zero" approach. Therefore, for
critical, low-ordered design cases, the technique presented here

will provide best results.

The Jenkins and Traub factoring algorithm is a very accurate
means of obtaining the zeros of polynomials within an order of one-
hundred or so. However, high ordered SAW filter designs will require
that the zeros of polynomials of a thousand order, or more, will need
to be extracted. Based upon observation of the programs and
polynomial characteristics encountered in this thesis, several
altemative approaches to locating the zeros seem feasible.

One technique that merits further investigation is the use of
the Fourier transform to expose the stopband zero locations. This
can be done by noting where the stopband nulls occur and reference
these points to the corresponding angles about the z-plane.unit
circle. The cosines and sines of these angles are the real and
imaginary components of the stopband zeros which, of course, have
corresponding complex conjugates in the lower half of the unit circle.
Once all of the stopband zeros have been found, the z-polynomial may
be deflated in one step, yielding a polynomial consisting of only
the passband zeros. Next, the Jenkins and Traub algorithm may be
applied to the greatly reduced polynomial to locate the passband
zeros. The Fourier transform technique could be applied to any FIR

obtained by any design technique.

W -
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Another zero location technique which may be explored is unique
to the Parks and McClellan program. One of the outputs of the
program is a listing of all of the Chebyshev polynomial extremal
frequencies. Since the 1imits of each stopband are known (specified
apriori), and since the extremal frequencies are fairly evenly
spaced in the stopband, an interpolation between adjacent extremal
frequencies will provide a good approximation (or, at least a good
initial guess) to a function zero in the stopband. If the
interpolation method is deemed sufficient, then all of the zeros
found may be used to reduce the response down to a polynomial
containing only the passband zeros, to which the Jenkins and Traub
algorithm may be applied. A better approximation of the stopband
zeros would be obtained by applying the interpolation approximation
as an initial guess to Bairstow's technique to obtain the best
estimate of the zero. Again, the passband zeros could be found
using the Jenkins and Traub method.

In conclusion, an optimal split of zeros does exist, based upon
the stated criteria. The major limiting factor of the presented
technique is the requirement that all possible split combinations
must be devised and rated with respect to each other. This is a
very time-consuming process and future efforts may lead to a more
efficient means of finding the optimal combination. The use of more

powerful computing machines may make the split-design of somewhat

higher order filters practical, but a reasonable upper limit is
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rapidly approached with each increase in filter order. Perhaps the
best tradeoff between this method and the "alternating zero" approach
is to obtain the best fifty-fifty split by trying all possible
combinations for this case only (i.e., N zeros taken N/2 at a time).
This approach will, at the very least, provide as good a design as
the "altemating zero" approach, without the serious high order
computational drawbacks of the method presented here. Additionally,
some design cons‘derations may favor a fifty-fifty split, as in the
case of two digital signal processors being required to evenly share
the processing tasks. Nevertheless, the purpose of this thesis was
to prove the existence of one such optimal combination, not the

optimal means of obtaining it. With a sigh of relief, and a hint

of moderate surprise, such proof has been presented.
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SUBROUTINE REMEZDES
C
C
C PROGRAM FOR THE DESIGN OF LINEAR PHASE FINITE IMFULSE
C RESFONSE (FIR) FILTERS USING THE REMEZ EXCHANGE
ALGORITHM
C JIM MOCLELLAN, RICE UNIVERSITY, AFRIL 13, 1973
C
C MODIFIED BY KEITH V. LINDSAY, UNIVERSITY OF
C CENTRAL FLORIDA, 1 MARCH 86, FOR USE WITH UCF'S
C SAHCAD PROGRAM.
C
C THREE TYPES OF FILTERS ARE INCLUDED—BANDPASS FILTERS
C DIFFERENTIATORS, AND HIIBERT TRANSFORM FILTERS
C
C ™E INFUT DATA QONSISTS OF 5 SECTIONS
C
C SECTION 1—FILTER LENGTH, TYPE OF FILTER, 1-MULTIPLE
C PASSBANLY STOPBAND, 2-DIFFERENTIATOR, 3-HILBERT TRANSFORM
C FILTER, NUMBER OF BANDS, CARD PUNCH DESIRED, AND GRID
C DENSTTY
C
C SECTION 2—BANDEIGES, LOWER AND UPPER EDGES FOR EACH
BAND
C WITH A MAXIMOM OF 10 BANDS.
C
C SBECTION 3-——DESIRED FUNCTION (OR DESIRED SLOPE IF A
C DIFFERENTIATCR ) FOR EACH BAND.
o
C SECTION 4—WEIGHT FUNCTION IN EACH BAND. FOR A
C DIFFERENTIATOR, THE WEIGHT FUNCTION IS INVERSELY
C PROFORTIONAL TO F
C
CQOMMON/FILE/ AMP(4096) ,FHASE(4096) ,NFFT, ITYPE
QOMMON/DAT/ PO, TFLO, TFHI, NOM
QOMMDN
PI12,AD,DEV, X, Y, GRID, DES, WT, ALPHA, IEXT, NFONS, NGRID
DIMENSION IEXT(514) ,AD(514) ,ALPHA(514),X(514),Y(514)
DIMENSION H(514)
DIMENSION DES(8224) ,GRID(8224) ,WT(8224)
DIMENSION EDGE(20) ,FX(10) ,WIX(10) ,DEVIAT(10)
DOUBLE FRECISION PI2,PI
DOUBLE PRECISION AD,DEV,X,Y
DOUBLE PRECISION HH
LOGICAL FAIL, MOREN
INTEGER PB, SB
PI2=6.283185307179586
PI=3.141592653589793
Cc
C THE PROGRAM IS SET UP FOR A MAXTMUM LENGTH OF 1024, BUT
C THIS UPPER LIMIT CAN BE CHANGED BY REDIMENSIONING THE
C ARRAYS IEXT, AD, ALFHA, X, Y, H TO BE NFMAX/2+2.
C THE ARRAYS [ES, GRID, AND WT MUST BE DIMENSIONED
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C 16 (NPMAX/2+2) .
C
NFMAX=1024
100 CONTINUE
JTYPE=0
C

C PROGRAM INFUT SECTION
C
PRINT *,' DIGITAL FILTER DESIGN (FIR) VIA THE
1 REMEZ EXCHANGE ALGORTTHM. '
PRINT *,' '
FRINT *,'ENTER TYPE OF FILTER:'
FRINT ¥%,' (1) -MULTIPLE PASSBAND/ STOFBAND'
PRINT *, (2) -DIFFERENTIATOR'
FRINT %,' (3) ~HILBERT TRANSFORM FILTER'
FRINT %,' !
READ *,JTYPE
FRINT &%,' !
FRINT *, 'ENTER THE NUMBER OF BANDS '

-

FRINT * 'CUTRUT THE IMPULSE RESKNSE (1=YES, 0=NO)'
READ ,m

JRUNCE=1

FRINT *,'ENTER THE GRID DENSITY'

READ *,IGRID

LGRID=16

IF(NBANDS.LE.0) NBANDS=1

a0 00

CGRJDIFNSITYISPSSJMED'IOBEIG UII.BSSPECIFIED
OTHERWISE.

C
IF(IGRID.LE.0) IGRID=16
DO 888 J=1,NBANDS
FRINT *,' '
ERINT *,'BPND ',J,':'
FRINT *,' LONER EIGE:'
READ *, EDGE(2%J-1)
PRINT *+,'
PRINT »,! UPPER EIGE:'
READ *, EIGE(2%J)

888 CONTINUE
IF(JTYPE.H.2) GO TO 890
FRINT *,*' '
FRINT *,'ENTER THE DESIRED FUNCTION OF EACH BAND'
FRINT *,' (0=NOPASS, 1=PASSBAND) '
DO 889 J=1,NBANDS
PRINT *+,°
IRINT *,'  BAND *,J,':
READ *,FX(J)

889 CONTINUE
GO TO 893

890 DO 892 J=1,NBANDS
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FRINT *, 'ENTER THE SLOFE OF BAND ',J
READ *,FX(J)

FRINT *,'ENTER THE MAX BB RIPPLE IN THE PASSBAND'
READ *,DP
DP=10.E0** (DP/20) -1.0E0
DS=1.0ED
DO 898 J=1,NBANDS
FRINT *,' '
FRINT *,'ENTER THE MAXIMUM B LEVEL IN BAND ',J
READ *, WIX(J)
IF (WIX(J) .K).0.0E0) THEN
WIX(J) =1.0ED
PB=J
GO TO 898
END IF
C  WIX(J) =AINT(10.0E)**((20.0ED*ALOG1O(DP) -
WIX(J))/20.0E0) +1)
WIX(J) =(10.0E0** ( (20 .0ED*ALOG1 0(DP) -WIX (J) ) /20.0ED) )
IF (WIX(J) .LT.1.0E0) WIX(J)=1.0ED
PRINT *, ' STOPBAND WEIGHTING ="', WIX(J)
2477 IF (DS.GT.DP/WIX(J)) THEN
DS=DP/WIX ()
SB=J
IP (J.K.1) THEN
DELTAP=EIGE(3) -EDGE(2)
GO TO 898
END IF
IF (J.LT.NBANDS) THEN
IF (DP/WIX(J-1) .EQ.DP) THEN
DELTAF=EIGE (J*2-1) ~EDGE(J*2-2)
GO TO 898
END IF
DELTAF=EDGE (J*2+1) ~EDGE(J*2)
GO To 898
END IF
IF (J.EKQ.NBANDS) THEN
DELTAF=EDGE(J*2-1) ~EDGE(J*2~2)
END IF
END IF
898 CONTINUE
C
C TARE A GUESS AT AN INITIAL VALUE FOR NFILT
C BASED UFON VAIDYANATHAN'S FORMULATION
C

NFILT=INT((-10.0B0*ALOG10(DP*DS) - 13.0HD)/(14.6ED *

DELTAF))

2126 PRINT *, 'WORKING ON FILTER OF ORDER ',NFILT-1
IF (NFILT. GT. N'MAX. OR. NFILT. LT.3) CALL ERRCR
IF(JTYPE.EHQ.0) CALL ERRCR
NEG=1
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IF (JTYPE.FQ.1) NEG=0

NODD=NFILT/2

NODD=NFILT-2*NCDD

NFONS=NFILT/2

IF(NODD. EC.1.AND. NEG. ED.0) NFONS=NFONS+1

SET UP THE DENSE GRID. THE NUMBER OF POINTS IN THE GRID
IS (FILTER LENGTH + 1) *GRID DENSITY / 2

sYeNolg]

GRID(1) =EDGE(1)
DELF=LGRID*NFCNS
DELF=0.5/DELF
IF(NHG.H.0) GO T0 135
IF(EDGE(1) .LT.DELF) GRID(1)=DELF
135 CQONTINUE
J=1
I=1
LBAND=1
140 FUR=EDGE(L+1)
145 TEMP=GRID(J)
C
CGIMATEEBE]ISIREDMPGNI‘IUERESKNSEPND'IBEWE]BHT
C FUNCTION ON THE GRID
C

DES (J) =EFF (TEMP, FX, WIX, IBAND, JTYPE)
WT(J) =WATE (TEMP, FX, WIX, LBAND, JTYPE)
J=J+1
GRID(J) =TEMP+DELF
IF(GRID(J) .GT.FUP) GO TO 150
GO TO 145
150 GRID(J-1)=FUP
DES (J-1) =EFF (FUP, FX, WIX, LBAND, JTYPE)
WT(J~1) =WATE (FUP, FX, WIX, LBAND, JTYPE)
IBAND=LBAND+1
I=L+2
IF (IBAND. GT.NBANDS) GO TO 160
GRID(J) =EXGE(L)
GO TO 140
160 NGRID=J-1
IF (NEG. NE.NODD) GO TO 165
IF (GRID(NGRID) .GT. (0.5-DELF) ) NGRID=NGRID-1
165 CONTINUE
C
C SET UP A NEW APPROXIMATION FRCBLEM WHICH IS EQUIVALENT
C TO HE ORIGINAL PROBLEM
C

IF(NEG) 170,170,180
170 IF(NODD.HK).1) GO TO 200
DO 175 J=1,NGRID
CHANGB=DQOS (PI*GRID(J) )
DES(J) =DES (J) /CHANGE
175 WI(J) =WT(J) *CHANGE
GO TO 200




180 IF(NODD.EQ.l) GO TO 190
DO 185 J=1,NGRID
CHANGE=DSIN(PI*GRID(J))
DES(J) =DES (J) /CHANGE
185 WT'(J) =WT(J) *CHANGE
GO TO 200
190 DO 195 J=1,NGRID
CHANGE=DSIN (PI2*GRID(J) )
DES(J) =DES (J) /CHANGE
195 WT(J) =WT(J) *CHANGE
C
C INITIAL GUESS FOR THE EXTREMAL FREQUENCIES--EQUALLY
C SPACED ALONG THE GRID
C
200 TEMP=FLOAT (NGRID-1) /FLOAT (NFCNS)
DO 210 J=1,NFCNS
210 IEXT(J)=(J-1) *TEMP+1
IEXT (NFONS+1) =NGRID
NM1=NFCNS-1
NZ=NFCNS+1
o
C QALL THE REMEZ EXCHANGE ALGORTTHM TO DO THE
APPROXTMATTON
C PRCBLEM.
Cc

CALL REMEZ (EDGE, NBANDS, MOREN)

IF (MOREN.H)..TRUE.) THEN
NFILT=NFILT+1
GO TO 2126
END IF
IF (DEV/WIX(PB) .GT.DP .OR. DEV/WIX(SB) .GT.DS) THEN
NFILT=NFILT+1
PRINT *"m m "',EV/WD((IB),'E",IB
PRINT *,'II.VIATICN S8 -"WM(S)"&"S
GO TO 2126
END IF
C
C CALQULATE THE IMPULSE RESPFONSE.

C
IF(NHG) 300,300,320
300 IF(NODD.EQ.0) GO TO 310
DO 305 J=1,NM1
305 H(J)=0.5*ALPHA(NZ-J)
H(NFONS) =ALPHA(1)
GO TO 350
310 H(1)=0.25*ALPHA (NFCNS)
DO 315 J=2,NMl
315 H(J) =0.25* (ALPHA (NZ~J) +ALPHA (NFONS+2-7) )
H(NPONS) =0 . S*ALFHA (1) 40 .25*ALPHA(2)
GO TO 350
320 IF(NODD.H).0) GO TO 330
H(1) =0 .25*ALPHA (NFCNS)
H(2) =0 .25*ALPHA (NM1)
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DO 325 J=3,NM1
325 H(J)=0.25* (ALPHA (NZ-J) —~ALPHA (NFONS+3-7) ) h

H(NFCNS) =0 .S*ALPHA (1) -0 .25*ALPHA(3)

H(NZ)=0.0 :

GO TO 350 hy
330 H(1)=0.25*ALPHA (NFCNS)

DO 335 J=2,NM1 '
335 H(J)=0.25* (ALPHA (NZ~J) ~ALPHA (NFONS+2-J) ) y

H(NFONS) =0 . S*ALPHA (1) -0 .25*ALPHA(2)

C ’ s

C SET UP IMPULSE RESPONSE/POLYNCMIAL, ARRAY ** s

C ARRAY IN VARIABLE AMP *k

(]

350 DO 342 I=1,NFONS -
AMP(I)=H(I)/H(NFCNS)

IF(NEG. EQ.0) AMP(NFILT-I+1)=H(I)/B(NFCNS)

IP(NHG. RQ.1) AMP(NFILT+1-I)=-H(I)/H(NFCNS) !
342 QONTINUE .

IF(NEG.HQ.1 .AND. NODD.EQ.l) AMP(NZ)=0.DO ~

C
C ADD SAWCAD PARAMETERS NCRMALIZED TO 1 MHZ
C 2 Fo SAMPLING

C -
NUM=NFILT -
NFFT=NFILT X
ITYPE=-1 .
FO=0.5
TFLO=- (NFILT-1) /2
TFHI= (NFILT-1) /2

c

C PROGRAM OUTPUT SECTION.

c l.'

¢ -]
PRINT 360 \

360 FORMAT(//70(1H*)//25X, 'FINITE IMPULSE RESPONSE (FIR) '/ .
1 25X, 'LINEAR PHASE DIGITAL FILTER DESIGN'/ .
2 25X, '"REMEZ EXCHANGE ALGORTTHM'/) :
IF(JTYPE.R.1) PRINT 365

365 FORMAT (25X, 'BANDPASS FILTER'/) -
IF(JTYPE. K).2) PRINT 370
370 FORMAT (25X, ' DIFFERENTIATOR'/)
IF(JTYPE.Q.3) PRINT 375
375 FORMAT (25X, 'HILBERT QRPNSFORER'/)
PRINT 378,NFILT
378 FORMAT (20X, 'FILTER LENGTH = ',13/)
PRINT 380
380 FORMAT (20X, '##*#* TMFULSE RESFONSE #####?!)
DO 381 J=1,NFCNS
R=NFILT+1-J
IF(NEG.H).0) PRINT 382,J,B(J ,K
IP(NEG.H).1l) PRINT 383,J,H(J) ,K
381 CONTINUE
382 FORMAT(20X,'H(',I3,') = ',E15.8,' = H(',I4,") ")

..‘;_‘II
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38 FORMAT(20X,'H(',I3,') = *,El5.8,'= -H(',I4,")")
IF(NEG. HQ.1.AND.NCDD. EQ.1) PRINT 384,NZ
384 FORMAT(20X,'H(',I3,') = 0.0')
DO 450 K=1,NBANIDS, 4
KUP=K+3
IF (RUP. GT. NBANDS) KUR=NBANDS
PRINT 385, (J, =K, KUP)
385 FORMAT(/24X,4 ('BAND',I3,8X))
PRINT 390, (EDGE(2%J-~1) ,J=K, KUP)
390 FORMAT(2X,'LOWER BAND EDGE',5F15.9)
PRINT 395, (EDGE(2%7) ,J=K, KUP)
395 FORMAT(2X, 'UPPER BAND EDGE',5F15.9)
IF(JTYPE.NE.2) PRINT 400, (FX(J) ,J=K, KUP)
400 FORMAT(2X, 'DESIRED VALUE',2X,5F15.9)
IF(JTYPE.H.2) PRINT 405, (FX(J) ,F=K, KUP)
405 FORMAT(2X, 'DESIRED SLOPE',2X,5F15.9)
PRINT 410, (WIX(J) ,J=K, RUP)
410 FORMAT(2X, 'WEIGHTING' ,6X,5F15.9)
DO 420 J=K,RUP
420 DEVIAT(J) =DEV/WIX(J)
PRINT 425, (DEVIAT(J) ,J=K, KUP)
425 FORMAT(2X, ' DEVIATION' ,6X,5F15.9)
IF(JTYPE.NE.1) GO TO 450
DO 430 J=K,KUP
430 DEVIAT(J) =20.0*ALOGLO(DEVIAT(J))
PRINT 435, (DEVIAT(J) ,J=K, KUP)
435 FORMAT (X, 'DEVIATION IN IB',5F15.9)
450 CONTINUE
PRINT 455, (GRID(IEXT(J) ) ,J=1,NZ)
455 FORMAT(/2X, ' EXTREMAL FREQUENCIES'/(2X,5F12.7))
PRINT 460
460 FORMAT(/1X,70(1H*)/1H1)
C
RETURN
END
C
FUNCTION EFF(TEMP, FX, WIX, LBAND, JTYPE)

c
¢ function to calculate the desired magnitude response
c as a function of frequency.
c
DIMENSION FX(5) ,WTX(5)
IF(JTYPE.K).2) GO TO 1
EFF=FX (IBAND)
RETURN
1  EFP=FX(LBAND) *TEMP
RETURN
END

o000

FUNCTION WATE (TEMP, FX, WIX, LBAND, JTYFE)
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¢ function to calculate the weight function as a function
c of frequency.
c
DIMENSION FX(5) ,WTX(5)
IP(JTYPE.IQ.2) GO TO 1
WATE=WTX (LBAND)
RETURN
1 IF(FX(IBAND).LT.0.0001) GO TO 2
WATE=WTX (LBAND) /TEMP

a0

1 FORMAT(' #*##tdaass® FRROR IN INPUT DATA thtstsssss?)
STOP
END

c
c
c

SUBROUTINE REMEZ (EDGE, NBANDS, MOREN)
c
c this subroutine implements the remez exchange algorithm
¢ for the weighted chebychev approximation of a continuous
¢ function with a sum of cosines. inputs to the
subroutine
c are a dense grid which replaces the frequency axis, the

c desired function on this grid. the weight function on
this

c grid, the number of cosines, and an initial guess of the

c extremal fregquencies. the program minimizes the
chebychev
c error by detemining the best location of the extremal
c frequencies (points of maximm error) and then
calculates
c the cwefficients of the best approximation.
COMMON
PI2,AD,IEV, X, Y,GRID, DES, WT, ALPHA, IEXT, NFCNS, NGRID
DIMENSION EDGE(20)
DIMENSION IEXT(514),AD(514) ,ALPHA(514),X(514),Y(514)
DIMENSION DES(8224) ,GRID(8224) ,WT(8224)
DIMENSION A(S514) ,P(513) ,Q(513)
DOUBLE PRECISION PI2,DNUM, DDEN,DTEMP, A, P,Q
DOUBLE PRECISION AD,IEV,X,Y
LOGICAL MOREN

C
C THE PROGRAM ALLOWS A MAXIMUM NUMBER OF ITERATIONS OF 25
C

MOREN= . FALSE.
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ITRMAX=25
m-l .0
NZ=NFONS+1
NZ Z=NFCNS+2
NITER=0
S 100 QONTINUE
IEXT (NZ22) =NGRID+1
: NITER=NITER+1
IF (NITER. GT. ITRMAX) GO TO 400
" DO 110 J=1,N2
DTEMP=GRID (IEXT (J) )
A DTEMP=DQOS (DTEMP*P12)
< 110 X(J)=DTEMP
Ly JET= (NFONS-1) /15+1
DO 120 J=1,NZ
120 AD(J)=D(J,Nz,JET)
DNUM=0 .0
DDEN=0.0
K=l
DO 130 J=1,Nz
L=IEXT (J)
DTEMP=AD(J) *DES(L)
DNUM=DNUM+DTEMP
DIEMP=K*AD (J) /WT (L)
DDEN=DDEN+DTEMP

.
- - Y

]

SPEES

L DR R AP

IF (DEV.GT.0.0) NO=-1
DEV=-NU*DEV
R=NU
DO 140 J=1,Nz
I=TEXT (J)
DTEMP=K*DEV/WT(L)
Y (J) =DES (L) +DTEMP
140 K=K
IF(DEV.GE.DEVL) GO TO 150
MOREN=. TRUE.
RETURN
" 150 DEVI=DEV
¥ JCHANGE=0
' K1=IEXT(1)
o KNZ=IEXT (NZ)
iy KLON=0
) NOT=-NU
J=1

F R A s Rt A |}

[P35 s s 2

Cc
. C SEAR(H FOR THE EXTREMAL FREQUENCIES OF THE BEST
. C APPROXTMATTON
N C
200 IF(J.H.N22Z) YNZ=CQOMP
IP(J.GE.NZ2Z) GO TO 300
KUP=IEXT (J+1)




210

215

220
225

230
235

240

250
255

-, .
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I=IEXT(J) +1

NOT=-NOT

IF(J.H.2) Y1=OMP
QOMP=DEV

IF(L.GE.KUP) GO TO 220
ERR=GEE (L, NZ)
ERR=(ERR-DES (L) ) WT(L)
DTEMP=NUT*ERR-COMP
IF(DTEMP.LE.0.0) GO TO 220
QOMP=NUT*ERR

LI+l

IF(L.GE.KUP) GO TO 215
ERR=GEE (L, NZ)

ERR= (ERR-DES (L) ) 8T (L)
DTEMP=NUT*ERR-COMP
IF(DTEMP.LE.0.0) GO TO 215
CQOMP=NUT*ERR

GO 0 210

IEXT (J) =L~1

J=J+1

KLON=Lr1

JANGE=JCINGB+1

GO TO 200

I=L~1

I=L1

IF(L.LE.KLOW) GO TO 250
ERR=GEE (L, NZ)

ERR= (ERR-DES (L) ) "WT (L)
DTEMP=NUT*ERR-COMP

IF (DTEMP.GT.0.0) GO TO 230
IF (JHNGE.LE.0) GO TO 225
GO TO 260

QOMP=NUT*ERR

I=L1

IF(L.LE.KLOW) GO TO 240
ERR=GEE (L, NZ)

ERR= (ERR-DES (L) ) "WT(L)
DTEMP=NUT*ERR~COMP

IF (DTEMP.LE.0.0) GO TO 240
QOMP=NUT*ERR

GO TO 235

RLOW=IEXT (J)

IEXT(J) =L+l

J=JF+l

JANGE=JCGHINGE+1

GO TO 200

I=IEXT (J) +1

IF (JGHNGE.GT.0) GO T0 21
I=L+1 '
IF(L.GE.KUP) GO TO 260
ERR=GEE (L, NZ)

ERR= (ERR-DES(L) ) "WT (L)
DTEMP=NUT*ERR-COMP
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260

300

310

315
320

325

330

340
345

350
360

IF(DTEMP.LE.0.0) GO TO 255
COMP=NUT*ERR

GO TO 210

KLOW=IEXT (J)

J=J+1

GO TO 200

IF(J.GT.N2Z) GO TO 320
IF(K1.GT. IEXT(1)) K1=IEXT(1)

IF(RNZ.LT. IEXT (NZ) ) KNZ=IEXT(NZ)

NOT1=NUT

NUT=-NU

=0

KUR=K1
COMR=YNZ*(1.00001)
LUCK=1

IFL+l

IF(L.GE.KUP) GO TO 315
ERR=GEE (L, NZ) )
ERR= (ERR-DES (L) ) T(L)
DTEMP=NUT*ERR-COMP

IF (DTEMP.LE.0.0) GO TO 310
QOMP=NUT*ERR

J=NZ.Z

GO TO 210

LOCR=6

GO TO 325

IF(LUCK.GT.9) GO TO 350
IF(COMP.GT. Y1) Y1=COMP
Kl1=IEXT(NZZ)

L=NGRID+1

KLOWN=KNZ

NOT=-NUT1
QOMP=Y1*(1.00001)

I=L~1

IF(L.LE.KLOW) GO TO 340
ERR=GEE (L, NZ)

ERR= (ERR-DES (L) ) "WT(L)
DTEMP=NUT*ERR-COMP

IF (DTEMP.LE.0.0) GO TO 330
J=NZ.Z

QOMP=NUT*ERR
LUCK=LUCK+10

GO TO 235

IF (LOCK.HD.6) GO TO 370
DO 345 J=1,NFCNS

IEXT (NZ2—J) =IEXT (NZ~-J)
IEXT (1) =K1

GO TO 100

KN=IEXT (NZ2)

DO 360 J=1,NFCNS

IEXT (J) =IEXT (J+1)

IEXT (NZ) =KN

GO TO 100
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370 IF(JCHENGE.GT.0) GO T0 100
(]
C CALOULATION OF THE COEFFICIENTS OF THE BEST
APPROXIMATION
C USING THE INVERSE DISCRETE FOURIER TRANSFORM
Y . c
! 400 QONTINUE
NM1=NFCNS-1
FSH=1 .0B-6
K GTEMP=GRID(1)
X(NZZ)=-2.0
QN2 "NFONS-1
DELF=1.0/QN
o " Ipl
IF (EDGE(1) .HQ.0.0.AND. EIGE(2*NBANDS) . K).5) KKK=1
: IF(NFONS.LE.3) KKKs=l
y IF (KKK.FQ.1) GO TO 405
DIEMR=DQDS (PI2*GRID(1) )
DNUM=DQOS( PI2 *GRID (NGRID) )
AR=2 .0/ (DTEMP-DNUM)
BB=~ (DTEMP+INUM) / (DTEMP-DINUM)
405 QONTINUE
DO 430 J=1,NFCNS
FT=(J-1) *DELF
XT=DQOS (PI2*FT)
IF(RRR.R.1) GO T0 410
XT= (XT-EB) /AA
FT=AQ0S(XT) /PT2
410 XE=X(L)
IF(XT.GT.XE) GO TO 420
IF ( (XE-XT) .LT.FSH) GO TO 415
I=L+l
GO TO 410
415 A(J)=Y(L)
. GO T0 425
420 IF((XT-XE).LT.FSH) GO TO 415
GRID(1) =FT
A(J) =GEE(1,Nz)
425 CONTINUE
' IF(L.GT.1l) Im=L-l
430 CONTINUE
GRID(1) =GTEMP
DOEN=PT2/CON
DO 510 J=1,NFCNS
DIEMP=0.0
DNUM= (J-1) *DDEN
IF(NM1L.LT.1) GO TO 505
DO 500 K=1 ,NM1
500 DIEMP=DTEMP+A (K+1) *DQOS(DNUM*K)
505 DI'EMP=2.0*DTEMP+A(1)
X 510 ALPHA(J) =DTEMP
’ DO 550 J=2,NFCNS
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550 ALPHA(J)=2*ALPHA(J) /N
ALPHA(]1) =ALPHA (1) /ON
IF (KKK.H.1) GO TO 545
P(1) =2 .0*ALPHA (NFONS) *BB+ALPHA (NM1)
P(2) =2 .0*AA*ALPHA (NFONS)
Q(1) =ALPHA (NFCNS~2) ~ALFHA (NFCNS)
DO 540 J=2,NMl
IF(J.LT.NM1) GO TO 515
AR=0 .5%AA
BB=0.5*BB
515 QONTINUE
P(J+1)=0.0
DO 520 K=l,J
A(K)=P(K)
520 P(K)=2.0*BB*A(K)
P(2)=P(2) +A(1) *2.0*AA
JMl=J-1
DO 525 K=1,JML
525 P(K)=P(K)+Q(K) +AA*A (K+1)
JPl=J+1
DO 530 K=3,JFP1
530 P(R)=P(K)+AA*A(K-1)
IF(J..NM1) GO TO 540
DO 535 K=1,J
535 Q(K)=-A(K)
Q(1) =Q(1) +ALPHA (NFONS-1-0)
540 OONTINUE
DO 543 J=1,NFCNS
543 ALPHA(J) =P(J)
545 CONTINUE
IF (NFONS.GT.3) REIURN
ALPHA (NFONS+1) =0.0
ALPHA (NFONS+2) =0 .0
RETURN
END

DOUBLE PRECISION FUNCTION D(K,N,M

C QOEFFICIENTS FOR USE IN THE FUNCTION GEE.

C
COMMON

PI2,AD, DEV, X, Y, GRID, DES, WT, ALFHA, IEXT, NFONS, NGRID
DIMENSION IEXT(514),AD(514) ,ALPEA(514),X(514),Y(514)
DIMENSION DES(8224) ,GRID(8&224) ,WT(8224)
DOUBLE PRECISION AD,DEV,X,Y
DOUBLE PRECISION Q
DOUBLE PRECISION PI2
D=1.0
Q=X (K)
DO 3 L=1,M
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DO 2 J=L,N,M
IF(J-K)1,2,1
D=2.0*D*(Q-X())
CQONTINUE
CONTINUE

ml OO/D

RETURN

END

DOUBLE PRECISION FUNCTION GEE(K,N)

C FUNCTION TO EVALUATE THE FREQUENCY RESFONSE USING THE
C LAGRANGE INTERFOLATION FORMULA IN THE BARYCENTRIC FORM

C

QOMMON

P12,AD,EV, X, Y,GRID, LES, WT, ALFHA, TEXT, NFCNS, NGRID

annn

1

DIMENSION IEXT(S514) ,AD(514) ,ALPHA(514) ,X(514) ,Y(514)
DIMENSION DES(8224) ,GRID(8224) ,WT'(8224)
DOUBLE FRECISION P,C,D,XF

DOUBLE FRECISION PI2

DOUBLE FRECISION AD,LEV,X,Y

P=0.0

XF=GRID(K)

XF=DQOS (PI2*XF)

D=G.0

DO 1l J=1,N

O=XF-X (J)

C=AD(J)/C

D=D+C

PuP+C*Y (D)

GEB=P/D

RETURN

END

SUBROUTINE QUCH
FRINT 1
FORMAT (' fttfkaetsds FATLURE TO CONVERGE

REARRRRRANERR I/

1 'OPRCBABLE CAUSE IS MACHINE ROUNDING ERRCR'/
2 '0THE IMFULSE RESFONSE MAY BE CQORRECT'/

3 'OCHECK WITH A FREQUENCY RESFONSE')

RETURN

END
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RPEOLY RQUTINE BY M.A. JENKINS
AQM TOMS VOL 1 NO 2 JUNE 1975

SUBROUTINE RREOLY
FINDS THE ZEROS OF A REAL FOLYNCMIAL
OP - DOUBLE PRECISION VECIOR OF QOEFFICIENTS IN
ORDER OF DECREASING FOWERS.

DEGREE - INTEGER DEGREE OF THE FOLYNCMIAL.

Z2ERCR, ZEROI - QUTEUT DOUBLE PRECISION VECTORS OF
REAL AND IMAGINARY PARTS OF THE
ZERCS.

FAIL -~ QUTRUT LOGICAL PARAMETER, TRUE ONLY IF
LEADING QOEFFICIENT IS ZERO (R IF RPOLY
HAS FOUND FEWER THAN DEGREE ZEROS.

IN THE LATTER CASE, DEGREE IS RESET TO
THE NUMBER OF ZEROS FOUND.

TO CHANGE THE SIZE OF POLYNOMIALS WHICH CAN BE

SAVED, RESET THE DIMENSIONS OF THE ARRAYS IN THE

C COMMON AREA AND IN THE FOLLOWNING DECLARATIONS

C FOR SCALING, BOUNDS AND ERRCR CALCULATIONS. ALL

C CALQULATIONS FOR THE ITERATIONS ARE DONE IN

C DOUBLE PRECISION.

COMMON/FILE/ AMP(4096) ,FHASE(4096) ,NFFT, ITYPE

COMMON/DAT/ FO, TFLO, TFHI, NUM

QOMMN /RFOLY/ P, QP, K, OK, VK, SR, SI, U,

1V, A B, C, D, Al, A2, A3, A6, A7, E, F, G,

2 H, SZR, SZI, 1ZR, 1Z1, ETA, ARE, MRE, N, NN

DOUBLE PRECISION P(1024) , QP(1024), K(1024),

1 OK(1024), SVK(1024), SR, SI, U, V., A, B, C, D,

2 A, A2, A3, A6, A7, E, F, G H, SIR, 21,

3 IZR, 121

REAL ETA, ARE, MRE

INTHGER N, NN
COPISDI@SIQ‘H)'IO‘O%SMITMI’BW
C FROM SAWCAD'S AMP ARRAY,

DOUBLE PRECISION OP(4096) , TEMP(1024),

1 ZEROR(1024) , ZEROI(1024), T, AA, BB, CC, DABS,

2 FACTOR
REAL Pr(1024), LO, MAX, MIN, XX, YY, QOSR,

1 SINR, XXX, X, SC, BND, XM, FF, DF, DX, INFIN,

2 SMALND, BASE

INTEGER DEGREE, ONT, Nz, I, J, JJ, M1

IOGICAL FAIL, ZERCK

C THE RILLONING STATEMENTS SET MACHINE CONSTANTS USED

C IN THE VARIOUS PARTS OF THE PROGRAM. THE MEANING OF THE

C FOUR (ONSTANTS ARE...

C ETA THE MAXIMUM RELATIVE REPRESENTATION ERROR
WHICH CAN BE DESCRIBED AS THE SMALLEST
FOSITIVE FLOATING FOINT NUMBER SU(H THAT
1.DO+ETA IS GREATER THAN 1.

INFIN THE LARGEST FLOATING FOINT NUMBER.

SMALNO THE SMALLEST FOSITIVE FLOATING FOINT

QAOOOOOOQOOONONOG O0O00
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NUMBER IF THE EXPONENT RANGE DIFFERS IN SINGLE
AND DOUBLE FRECISION THEN SMALNO AND INFIN
SHOULD INDICATE THE SMALLER RANGE.
BASE THE BASE OF THE FLOATING FOINT NUMBER
SYSTEM USED.
C ™E VAL;JES BELON CORRESFOND TO THE VAX 11-750
BASE=2.

an0nOan

ETA=1.387779B-17

INFIN=1.7E38

SMALNO=5.9B-39
C ARE AND MRE REFER TO THE UNIT ERRCR IN + AND *
C RESPECTIVELY. THEY ARE ASSUMED TO BE THE SAME AS
C ETA

ARE=ETA

MRE=ETA

LO=SMALNC/ETA
o
C INITIALIZE ARRAYS
C

IF (ITYPE.FQ.l) THEN
PRINT *,'THIS IS A FREQUENCY FILE!'
PRINT *, 'EXPECTED AN IMPULSE RESFONSE FILE'
RETURN
END IF
DEGREE=NUM-1
DO 233 I=1,DEGREE+l
OP(I)=AMP(I)
AMP(I)=0.0D0
PHASE(I)=0.0D0
ZEROR(I)=0.0D0
ZEROI(I)=0.0D0
233 QONTINUE
Cc
C INITIALIZATION OF OONSTANTS FOR SHIFT ROTATION
Cc
XX=0.70710678
YY=-XX
COSR=-.06975647 4
SINR=.99756 405
FAIL=.FALSE.
N=DEGREE
NN=N+1
C ALGORITHM FAILS IF THE LEADING (DEFFICIENT IS ZERO.
IF (OP(1) .NE.0.DO) GO TO 10
FAIl=.TRUE.
DEGREE=0
PRINT *,'LEADING QOEFFICIENT IS ZERO —— NOT ALLOWED'
RETURN
C REMOVE THE ZEROCS AT THE ORIGIN IF ANY
10 IF(OP(NN) .NE.0.0DO) GO TO 20
J=DEGREE-N+1
ZEROR(J) =0.0D0
amp(j) =0.040
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ZEROI (J) =0.0D0
phase (j) =0.040
NN=NN-1
N=N-1
GO T0 10
C MAKE A (OPY OF THE QDEFFICIENTS
20 DO 30 I'I'NN
P(I)=CP(I)
30 CQONTINUE
C START THE ALGORITHM FOR ONE ZERO
40 IF(N.GT.2)GO TO 60 '
IF(N.LT.1) RETURN
C QALKULATE THE FINAL ZERO CR PAIR OF ZERCS.
IF(N.K.2)G0 TO 50
ZEROR (DEGREE) =-P(2) /P(1)
ZEROI (DEGREE) =0 .0D0
AMP (DEGREE) =ZEROR (DBGREE)
PHASE (DEGREE) =ZEROI (DEGREE)
RETURN
50 CALL QUAD(P(1), P(2), P(3), ZEROR(DEGREE-1),
1 ZEROI(DBGREE-1) , ZEROR(DEGREE), ZEROI (DEREE))
amp(degree-1) =zeror (degree-1)
phase (degree-1) =zeroi (degree-1)
AMP (DEGREE) =ZEROR (DEGREE)
PHASE (DBEGREE) =ZEROI (DEGREE)
REIURN
C FIND THE LARGEST AND SMALLEST MODULI OF QOEFFICIENTS
60 MAX=0.
MIN=INFIN
DO 70 I’l,m
X=ABS(SNGL(P(I)))
IF(X.GT.MAX) MAX=X
IF(X.NE.O. .AND. X.LT.MIN) MIN=X
70 CQONTINUE
C SCALE IF THERE ARE LARGE OR VERY SMALL QOEFFICIENTS
C COMEUTES A SCALE FACTOR TO MULTIFLY THE
C (OUEFFICIENTS OF THE FOLYNOMIAL. THE SCALING IS DONE
C TO AVOID OVERFLON AND TO AVOID UNDETECTED UNDERFLOW
C INTERFERING WITH THE QONWERGENCE CRITERION.
C THE FACIOR IS A FOWER OF THE BASE.
SO=LO/MIN
IP(SC.GT.1.0)GO TO 80
IF(MAX.LT.10.) GO TO 110
IF(SC.K.0.) SC=SMALNO
GO TO 90
IF (INFIN/ SC. LT. MAX) GO TO 110
I=ALOG (SC) /ALOG(BASE) 40 .5
FACIOR= (BASE*1.0D0) *+L,
IF(FACTOR. HQ.1.D0)GO TO 110
DO 100 I=1,NN
P(I)=FPACTOR*P(I)
100 QONTINUE
C COMIUTE LOWER BAQUND ON MODULI OF ZERCS.
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110 DO 120 I=1,NN
PT(I)=ABS(SNGL(P(I)))
120 QONTINUE
PT (NN =—PT (NN
C COMFUTE UPPER ESTIMATE OF BOUND
X=EXP ( (ALOG (-PT (NN ) -ALOG (PT(1) ) ) /FLOAT(N) )
IF(PT(N .FQ.0.)GO TO 130 o
C IF NEWTON STEP AT THE ORIGIN IS BETTER, USE IT!
XM=-FT (NN) /PT (N
IF(XM. LT. X) X=XM
C CHOP THE INTERVAL (0,X) UNTIL FF .LE. O
. 130 XM=X*.1
FF=PT(1)
DO 140 I=2,NN
FP=FF*XM+PT (1)
140 CONTINUE
IF(FF.LE.0.)GO TO 150
X=XM
GO T0 130
150 DX=X
, C DO NEWNTON ITERATION UNTIL X QONVERGES TO TWO
s C DECIMAL FLACES
160 IF(ABS(DX/X).LE..005)G0O TO 180
FP=PT (1)
DF=FF
Do 170 I=2,N
FP=FP*X+PT (1)
J DF=DF*X+FF
: 170 CONTINUE
‘ FP=FP*X+PT (NN
¥ DX=~FF/DF
L X=X-DX
. GO 70 160
3 180 BND=X
' C COMIUTE THE DERIVATIVE AS THE INITIAL K POLYNOMIAL
\ C AND DO 5 STEPS WITH NO SHIFT
p NML=N-1
DO 190 I=2,N
K(I)=FLOAT (NN-I) *P (1) /FLOAT (N
y 190 CQONTINUE
‘ K(1) =p(1)
Ab=P (NN
EB=P(N)
ZERCK=K (N) .FQ.0.D0
: DO 230 JJ=1,5
! IF(ZEROK)GO T0 210
C USE SCALED FORM OF RECURRENCE IF VALUE OF K AT 0 IS
C NONZERO
T=~AA/CC
DO 200 I-l.lﬂl
J=NN-1
K(J) =T*K (J-1) +P(J)




Ala1n i AR L Aal Sl il

96

200 CONTINUE
K(1)=p(1)
ZEROK=DABS(K (N) ) . LE. DABS (BB) *ETA*10.
GO TO 230
C USE THE UNSCALED FORM OF RECURRENCE
210 DO 220 I=1,NMl
J=NN-1
K(J) =K (J-1)

ZEROK=K (N) . 0.0.D0
230 CONTINUE
C SAVE K FOR RESTARTS WITH NEW SHIFTS
DO 240 I=1,N
TEMP(I) =K (I)
240 CONTINUE
C LOCP TO SELECT THE QUADRATIC QORRESFONDING TO EACH
C NEN SHIFT
DO 280 CNT=1,20
C QUADRATIC RESFONIS TO A DOUBLE SHIFT TO A
C NON-REAL FOINT AND ITS (OMPLEX CONJUGATE. THE FOINT
C HAS MDLULUS BND AND AMPLITUDE ROTATED BY 94 DEGREES
C FROM THE PREVIOUS SHIFT
Z 200{=DSR*XX~SINR*YY
.~ Y= SINR*XX-+OSR*YY
XXmO0K
SReBND*XX
SI=BND*YY
U=-2.0DO*SR
- V=BND
C SECOND STAGE CALQULATION, FIXED QUADRATIC
CALL FXSHFR(20*CNT, N2)
IF(NZ. Q.0) GO TO 260
C THE SEOOND STAGE JUMPS DIRECTLY TO ONE OF THE THIRD
C STAGE ITERATIONS AND RETURNS HERE IF SUCCESSFUL.
C DEFLATE THE FOLYNOMIAL, STORE THE ZERO OR ZEROS AND
C RETURY TO THE MAIN ALGORTTHM.
J=DEGREE-N+1
ZEROR(J) =SZR
X AMP(J) =SZR
ZEROI () =SZ1
) PHASE(J) =S21
- NN=NN-NZ
- NeNN-1
DO 250 I=1,NN
P(1)=QP(I)
250 CONTINUE
R IF(NZ.H).1) GO TO 40
ZERCR(J+1) =LZR
' ZEROI (J+1) =121
AMP(J+1) =IZR
: PHASE (J+1) =1Z 1
: GO TO 40
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IF THE ITERATION IS UNSUCCESSFUL ANOTHER QUADRATIC
IS (HOSEN AFTER RESTORING K
0 DO 270 1=1,N

K(I)=TEMP(I)
270 QONTINUE
280 CONTINUE
C RETURN WITH FAILURE IF NO QONVERGENCE WITH 20

Cc
C
26

SUBROUTINE FXSHFR(L2, NZ)
C COMRUTES UP TO L2 FIXED SHIFT K-FOLYNOMIALS,
C TESTING FOR CONWEFGENCE IN THE LINEAR OR QUADRATIC
C CASE. INITIATES ONE OF THE VARIABLE SHIFT
C ITERATIONS AND RETURNS WITH THE NUMBER OF ZEROS
C FOUND.
C L2 - LIMIT OF FIXED SHIFT STEPS.
C N2 - NUMBER OF ZEROS FOUND.
CQOMMON /RFOLY/ P, QP, K, K, SVK, SR, SI, U,
1 V, Ac B' Cp D' Alp Az; AB' M, A-" E' F, G,
2 H, SZR, Si1, 1ZR, 1ZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(1024), QP(1024), K(1024),
1 OK(1024), WK(1024), SR, SI, U, V, A, B, C, D,
2 Al, A2, A3, A6, A7, E, F, G, H, SZR, 81,
3 1ZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION SVU, SW, UI, VI, S
REN. BETAS, BETAV, 0SS, WV, SS, W, TS, 1V,
1l 018, OV, TV, ISS
INTHGER 12, Nz, TYPE, I, J, IFLAG
LOGICAL VPASS, SPASS, VIRY, STRY
Nz=0
BETAV=.25
BETAS=.25
06S9=SR
V=V
C EVALUATE FOLYNOMIAL BY SYNTHETIC DIVISION
CALL QUADSD(NN,U,V, P,QP, A, B)
CALL CALCSC(TYPE)
DO 80 J=1,I2
C CALQULATE NEXT K PFOLYNOMIAL AND ESTIMATE V
CALL NEXTK (TYPE)
CALL CALCSC(TYFE)
CALL NEWEST(TYPE, UI,VI)
VWaVI
C ESTIMATE S
S9=0.
IF(K(N) .NE.0.D0) SS=-P(NN /K(N
TV=l.
TS=1.
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IF(J.R.1 .OR. TYPE.H).3) GO TO 70
C COMIUTE RELATIVE MEASURES OF CONVERGENCE OF S AND V
C SHQUENCES
IF (W.NE.0.) TV=ABS( (VW-OVV) /W)
IP(SS.NE.0.)TS=2BS( (SS-0OSS) /SS)
C IF DECREASING, MULTIPLY TWO MOST RECENT
C CONVERGENCE MEASURES
™VV=1l.
IF (TV. LT. OIV) TVV=TV 0TV
TSS=1.
IF(TS. LT. OIS) TSS=TS*0TS
C QOMPARE WITH (ONVERGENCE CRITERIA
\"2ASS=TVV. LT. BETAV
SPASS=TSS. LT. BETAS
IF(.NOT. (SPASS .OR. VPASS)) GO TO 70
C AT LEAST ONE SHQUENCE HAS PASSED THE QONVERGENCE
C TEST. STORE VARIABLES BEFORE ITERATING.
SVO=U
SVW=v
DO 10 I‘I'N
SVK(I)=K(I)
10 QONTINUE
S=SS
C (HOOSE ITERATION ACCQORDING TO THE FASTEST
C CONVERGING SEQUENCE.
VIRY=.FALSE.
STRY=.FALSE.
IP(SPASS .AND. ((.NOT.VPASS) .CR.
1 TSS.LT.TVW)) GO TO 40
20 CALL QUADTIT(UI,VI,Nz)
IF(NZ.GT.0) RETURN
C QUADRATIC ITERATION HAS FAILED. FLAG THAT IT HAS
C BEEN TRIED AND DECREASE THE QONVERGENCE CRITERION.
VIRY=.TRIE.
BETAV=BETAV*.25
C TRY LINEAR ITERATION IF IT HAS NOT BEEN TRIED AND
C THE S SHQUENCE IS (ONVERGING.
IP(STRY .OR. (.NOT.SPASS)) GO TO 50

K(I)=SVK(I)
30 QONTINUE
40 CALL REALIT(S, Nz, IFLXAG)

IF(NZ.GT.0) RETURN
C LINEAR ITERATION HAS FAILED. FLAG THAT IT HAS BEEN
C TRIED AND DECREASE THE CONVEFRGENCE CRITERION.

STRY=, TRUE.

BETAS=BETAS*. 25

IF (IFLAG.K).0) GO TO 50
C IF LINEAR ITERATION SIGNALS AN ALMOST DOUBLE REAL
C ZERO ATTEMPT QUADRATIC ITERATION.

UI=~(S+S)

VI=S*s

GO TO 20
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C RESTORE VARIABLES

50 U=SVO0
V=SwW
Do 60 I=1,N
K(I)=SVK(I)
60 CONTINUE

C TRY QUADRATIC ITERATION IF IT HAS NOT BEEN TRIED
C AND THE V SHQUENCE IS CONVERGING.

IF(VPASS .AND. (.NOT.VIRY)) GO TO 20
C RECOMFUTE QP AND SCALAR VALUES TO (ONTINUE THE
C SEQOND STAGE.

CALL QUADSD(NN, U, V, P, QP, A, B)

CALL CALCSC(TYPE)
70 V=W

SUBROUTINE QUADIT(UU, W, NZ)

C VARIABLE-SHIFT K-FOLYNOMIAL ITERATION FOR A
C QUADRATIC FACTOR CQONVERGES ONLY IF THE ZEROS ARE
C RQUIMODULAR OR NEARLY SO.
C UU, W - QOEFFICIENTS OF STARTING QUAIRATIC
cCN - NUMBER OF ZERCS FOUND

COMMON /RFOLY/ P, QP, K, QK, SVK, SR, SI, U,

1l V' A, B, C' D, Al' Az, A3' M' A7, E' F, G'

2 H, SZR, SZI, LZR, 1ZI, ETA, ARE, MRE, N, NN

DOUBLE PRECISION P(1024), QP(1024), K(1024),

1l G((1024), M(1024)' SR, SI"U’ V, A(B' C' D'

2 Alp A2, B' M, A7’ E’ F' G' H’ &R( &I'

3 LZR, LZI

REAL ETA, ARE, MRE

INTEGER N, NN

DOUBLE PRECISION UI, Vi, UU, VV, DABS

REAL MS, MP, OMP, EE, RELSTP, T, ZM

INTEGER NZ, TYFE, I, J

LOGICAL TRIED

NZ=0

C MAIN 1LOCP
10 CALL QUAD(1.DO, U, V, SZR, SZI, IZR, IZI)
C RETURN IF ROOIS OF THE QUADRATIC ARE REAL AND NOT
C QLOSE TO MIULTIFLE OR NEARLY EQUAL AND OF OPFOSITE
C SIGN.
IF (DABS(DABS(SZR) -DABS(LZR) ) .GT. .01DO*
1 DABS(IZR)) RETURN
C EVALUATE FOLYNCOMIAL BY QUADRATIC SYNTHETIC DIVISION.
CALL QUADSD(NN, U, V, P, QP, A, B)

V':. fe
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MP=DABS(A-SZR*B) +DABS(SZ1*B)

C COMFUTE A RIGOROJS BOUND ON THE ROUNDING ERRCR IN

C EVALUATING P
ZM=SQRT (ABS(SNGL(V) ) )

EE=2 . *ABS(SNGL(QP(1)))
T=-SZR*B

DO 20 I-Z,N
EE=EE*ZM+ABS(GL(QP(I)))

20 CQONTINUE '
EE=EE*ZM+rABS(SNGL(A) +T)
EE=(5.*MRE+4 . *ARE) *EE- (5. *"MRE+2 . *ARE) *

1 (ABS(SNGL(A) +T) +ABS(SNGL(B) ) *z2M) +
2 2.%ARE*ABS(T)

C ITERATION HAS CONVERGED SUFFICIENILY IF THE

C FOLYNQMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND
IF (MP.GT.20.*EE)GO T0 30

NZ=2
RETURN

30 J=F+1

C STOP ITERATION AFTER 20 STEPS
IF(J.GT. 20) RETURN

IF(J.LT.2)G0 TO 50
IP(RELSTP.GT..01 .OR. MP.LT.OMP .OR. TRIED)
1 GO T0 50

C ACLUSTER APPEARS TO BE STALLING THE QONVERGENCE.
C FIVE FIXED SHIFT STEPS ARE TAKEN WITH A U,V C(LOSE
C T0 THE CLUSTER.

IF (RELSTP. LT.ETA) RELSTR=ETA

RELSTP=SQRT (RELSTP)

U=U-U*RELSTP

Va=\4+V*RELSTP

CALL QUADSD(NN,U,V,P,QP, A,B)

DO 40 I=1,5

CALL CALCSC(TYPE)

CALL NEXTK(TYPE)

40 CONTINUE
TRIED=. TRUE.
J=0

50 QMP=MP

C CALQULATE NEXT K POLYNCOMIAL AND NEW U AND V
CALL QALCSC(TYFE)
CALL NEXTK(TYPE)
CALL CALCSC(TYPE)
CALL NEWEST(TYPE, UI, VI)

C IF VI IS ZERO THE ITERATION IS NOT CONVERGING.
IF(VI.H.0.D0) RETURN
RELSTR=DABS( (VI-V) /VI)

SUBROUTINE REALIT(SSS, Nz, IFLAG)
C VARIABLE SHIFT H FOLYNOMIAL ITERATION FOR A REAL

PR L 3 RO I gt e AT DV TR D LT TGP0 S TR

~~~~~
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C ZERO. o
C SSS - STARTING ITERATE v
CNZ - NUMBER OF ZERO FOUND
C IFLAG~- FLAG TO INDICATE A PAIR OF ZEROS NEAR REAL ;
C AXIS. '

QOMMON /RFOLY/ P, QP, K, OK, VK, SR, SI, U, S

1V, A B, C D, Al, A2, A3, A6, A7, E, F, G,

2 H, SZR, S2I, LZR, IZI, ETA, ARE, MRE, N, NN

DOXBLE PRECISION P(1024), QP(1024), K(1024),

1 OK(1024), SVK(1024), SR, SI, U, V, A, B, C, D,

2Al, A2, A3, A6, A7, E, F, G, B, SZR, &1, <
3 LZR, IZI 5,
REAL ETA, ARE, MRE v
INTEGER N, NN Of

DOUBLE PRECISION PV, KV, T, S, SSS, DABS
REAL M5, MP, OMP, EE .
INTEGER Nz, IFLAG, I, J, N N
NMl=N-1 N
Nz=0 N
9=SSS .
IFLAG=0
J=0 G
C MAIN LOOP
10 PV=P(1)
C EVALURTE P AT S
QP(1) =BV
DO 20 I=2,NN
PV=EV*S+P(I)
QP(I) =BV
20 CONTINUE
ME=DABS(FV)
C COMFUTE A RIGOROUS BOUND ON THE ERROR IN EVALUATING
CP

v v v v

ol NN @

MS=DABS(S)
EBE= (MRE/ (ARB+MRE) ) *ABS(SNGL(QP(1)))
DO 30 I-Z.m ’ ’
EB=EE*M5+ABS(SGL(QP(I))) i
30 QONTINUE ' ad
C ITERATION HAS CONVERGED SUFFICIENTLY IF THE
C FOLYNCMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND.
IF(;EP.GI‘.zo.'( (ARE+MRE) *EE-MRE*MP) ) GO TO 40
NZs=

AL,

- +~%%p

40 J=J+l
C STOP ITERATION AFTER 10 STEPS
IF(J.GT.10) RETURN
IF(J.LT.2) GO TO 50
IF(DABS(T) .GT. .001*DABS(S-T) .COR. MP.LE.OMP)
1 G0 10 50
C A QLUSTER OF ZEROS NEAR THE REAL AXIS HAS BEEN '
C ENQOUNTERED. RETURN WITH IFLAG SET TO INITIATE

LA AR
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C QUADRATIC ITERATION.
IFLAG=]
S89=5
RETURN
C RETURN IF THE FOLYNCMIAL VALUE BAS INCREASED
C SIGNIFICANTILY.
50 Mp=MP
C AOMFUTE T, THE NEXT ROLYNCMIAL, AND THE NEW ITERATE
Kv=K(1)
QK (1) =KV
DO 60 I=2,N
KV=KV*S+K(I)
QK (I) =KV
60 CQONTINUE
IF(DABS(KV) .LE.DABS(K(N) ) #10.*ETA)GO TO 80
C USE THE SCALED FORM OF THE RECURRENCE IF THE VALUE
COF K AT S IS NONZERO
Te-PV/KV
K(1) =QP(1)
DO 70 I.Z'N
K(I)=T"QK(I-1) +QP(I)
70 CONTINUE
GO TO 100
C USE SCALED FORM
80 K(1)=0.0D0
DO 90 I.Z'N
K(I)=QR(I-1)
90 CQONTINUE
100 Kv=K(1)
DO 110 I=2,N
KV=RKV*S+K (1)
110 QONTINUE
M.m
IF(DABS(KV) .GT.DABS(K(N) ) #10.*ETA) T=-PV/KV
S=S+T '
GO T0 10
END
SUBROUTINE CALCSC(TYPE)
C THIS RUTINE CALQULATES SCALAR QUANTITIES USED TO
C COMIUTE THE NEXT K PFOLYNCOMIAL AND NBN ESTIMATES OF
C THE QUADRATIC QOEFFICIENTS.
C TYPE - INTHGER VARIABLE SET HERE INDICATING BOW THE
C CALQULATIONS ARE NORMALIZED TO AVOID
C OVERFLLW .
QOMDN /REOLY/ P, QP, K, K, SVK, SR, SI, U,
l1V,A B, C D, Al, 2, A3, A6, A7, E, F, G,
2 B, SZR, SZI, 12R, 121, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(1024), QP(1024) , K(1024),
1 QK(1024), SVK(1024), SR, SI, U, V, A, B, C, D,
2A, A2, A3, A6, A7, E, F, G, H, SZR, &I,
3 IZR, 121
REAL ETA, ARE, MRE
INTHGER N, NN

IR

R - -




103

DOUBLE PRECISION DABS
INTEGER TYPE
. C SYNTHETIC DIVISION OF K BY THE QUADRATIC 1,U,V
. CALL QUADSD(N, U, V, K, QK, C, D)
IF(DABS(C) .GT.DABS(K(N) ) *100.*ETA)GO TO 10
k. IF(MgS(D) ~GT.DABS(K (N-1) ) *100.*ETA) GO TO 10
! TYPE= '
] C TYPE=3 INDICATES THE QUADRATIC IS ALMOST A FACTOR
C OF K.
RETURN
: 10 IF(DABS(D) .LT.DABS(C) )GO TO 20
TYPE=2 '
C TYPE=2 INDICATES THAT ALL FORMULAS ARE DIVIDED BY D
E=A/D
P=C/D
\ G=U"8
' H=V"B
A3=(A+G) *B+H* (B/D)
Al=B*P-A
A7=(F+0) *A+H
RETURN
20 TYPE=1
C TYPE=1 INDICATES THAT ALL FORMILAS ARE DIVIDED BY C.
B=2/C
' F=D/C
- G=U*E
B=V'8
A3=A*E+ (B/C+G) *B
Al=B-A*(D/C)
A7=MG*D+H*F
RETURN
END
SUBROUTINE NEXTK (TYPE)
C COMIUTES THE NEXT K POLYNOMIALS USING SCALARS
C COMRUTED IN QALCSC.
COMMON /RFOLY/ P, QP, K, QK, SVK, SR, SI, U,
: 1V, A, B, C, D, AL, A2, A3, A6, A7, E, F, G,
2 H, SZR, SZ1, IZR, 1ZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(1024), QP(1024), K(1024),
1 QK(1024), SVK(1024), SR, SI, U, V, A, B, C, D,
2 Al, AZ, A3, M' A7l El F( Gl B, &Rp &I,
3 1ZR, 1ZI
REAL ETA, ARE, MRE
INTHGER N, NN
DOUBLE PRECISION TEMP, DABS
INTHGER TYPE
IF (TYPE. H.3) GO TO 40
TEMPR=A
: ' IF(TYPE.K).1) TEMP=B
¥ IF(DABS(AL) .GT.DABS(TEMP) *ETA*10.) GO TO 20
C IF Al IS NEARLY ZERO THEN USE A SPECIAL FORM OF THE
C RBECURRENCE.
K(1)=0.D0
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K(2) ==A7%QP(1)
DO 10 I’3,N
K(I)=A3*%QK(I-2) -A7"QP(I-1)
10 QONTINUE
RETURN
C USE SCGALED FORM OF THE RBEBCURRENCE.
20 A7=A7/A1
A3=A3/A1
K(1) =QP(1)
K(2) =QP(2) -A7%QP(1)
DO 30 I=3,N
R(I)=A3"QK(1-2) ~A7"QP(I-1) +QP(I)
30 CONTINUE
RETURN
C USE UNSCALED FORM OF THE RECURRENCE IF TYPE IS 3
40 K(1)=0.DO
K(2)=0.D0
DO 50 I’3'N
K(I)=QK(I1-2)
50 CONTINUE
RETURN
END
SUBROUTINE NEWEST(TYPE, UU, W)
C COMRUTES NEW ESTIMATES OF THE QUADRATIC COEFFICIENTS
C USING THE SCALARS QOMPUTED IN CALCSC.
COMMON /RFOLY/ P, QP, K, K, SVK, SR, SI, U,
1V, A B, C, D, Al, R2, A3, A6, A7, E, F, G,
2 H, SZR, SZI, 1ZR, 121, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(1024), QP(1024), K(1024),
1 QK(1024), SVK(1024), SR, SI, U, V, A, B, C, D,
2 Al, A2, A3, A5, A7, E, F, G, H, SZR, SZI,
3 1ZR, LZI
REAL ETA, ARE, MRE
INTHGER N, NN
DOUBLE PRECISION A4,A5,Bl,B2,Q1,C2,C3,
1l c4, TEMP, UU, W
INTHGER TYFE
C USE FORMULAS APFROFRIATE TO SETTING TYPE.
IF(TYPE.H).3) GO TO 30
IF(TYPE.H.2) GO TO 10
M=At+UB+H*F
AS=C+ (U+V*F) *D
GO TO 20
10 M=(A+G) *F+H
AS5=(F+U) *C+V¥D
C EVALUATE NEN QUADRATIC QOEFFICIENTS.
20 Bl=—K(N) /P(NN)
B2=(K (N~-1) +BL*P(N) ) /P (NN
Cl=V*B2*Al '
C2=B1*A7
C3=R1*B1*A3
CA=C1-C2-C3
TEMP=A5+B1 *M -C4
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IF(TEMP.EQ.0.D0O) GO TO 30
UO=0- (U*(C3+C2) +V* (Bl *A1 +B2#A7) ) /TEMP
W=V* (] .+C4/TEMP)
RETURN
C IF TYPE=3 THE QUADRATIC IS ZEROED.
30 U0=0.D0
wW=0.D0
RETURN
END
SUBROUTINE QUADSD(NN, U, V, P, Q, A, B)
C DIVIDES P BY THE QUADRATIC 1,0,V PLACING THE
C QUOTIENT IN Q AND THE REMAINIER IN A,B
DOUBLE PRECISION P(NN), Q(NN, U, V, A, B, C
INTEGER I
B=P(1)
Q(1)=B
A=P(2)-U"8
Q(2)=a
DO 10 I‘3pm
O=P(I)-U*A-V"B
Q(I)=C
B=A
A=C
10 QONTINUE
RETURN
END

SUBROUTINE QUAD(A, Bl, C, SR, SI, LR, LI)

CALCOULATE THE ZEROS OF THE QUADRATIC A*Z*#2+R1*Z+C.
THE QUADRATIC FORMULA, MODIFIED TO AVOID
C OVERFLOW, IS USED TO FIND THE LARGER ZERO IF THE
C ZEROS ARE REAL AND BOTH ZEROS ARE QOMPLEX.
C T™E SMALLER REAL ZERO IS FOUND DIRECTLY FROM THE
C PRODUCT OF THE ZEROS C/A.

DOUBLE PRECISION A, Bl, C, SR, SI, IR, LI, B,

1 D, E, DABS, DSQRT

IF(A.NE.0.DO) GO TO 20

SR=0.D0

IP(B1.NE.0.DO) SR=-C/Bl

LR=0.D0
10 SI=0.D0

uw.m

RETURN
20 IF(C.NE.0.DO) GO TO 30

m.m

LR=~Bl/A

GOTO1l0
C COMFUTE DISCRIMINATE AVOIDING OVERFLOW.
30 B=B1/2.D0
IF(DABS(B) .LT.DABS(C)) GO T0 40
B=1.D0~(A/B) *(C/B)
D=DSQRT (DABS(E) ) *DABS(R)
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GO T0 50
40 E<A
IF(C-LT.O.m) k-A
E=B*(B/DABS(C) )~E
D=DSQRT (DABS(E) ) *DSQRT(DABS(C) )
50 IF(E.LT.0.D0) GO TO 60
C REAL ZERCS.
IF(B.GE.0.D0) D=-D
LR=(~B+D) /A
SR=0.D0
IF(LR.NE.0.DO) SR=(C/LR)/A
GO T0 10
C COMPLEX CONJUGATE ZEROS.
60 SR=-B/A
LR=SR
SI=DABS(D/A)
LI=-SI
RETURN
END

e e e e > .
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C
SUBROUTINE QOMBO
C
C THIS ROUTINE GENERATES ALL FOSSIBLE, NON REPEATING
C COMBINATIONS OF N SAMPLES TAKEN K AT A TIME.
C ALGORTTHM ADAFTED FROM
C APPLIED COMBINATORIAL MATHEMATICS
C PAGE 24
C FOLYA ET AL 1964
C JCGHN WILEY AND SONS, INC, NEW YORK
COMMON/FILE/ AMP(4096) , PHASE(4096) ,NFFT, ITYPE
COMMON/ DAT/ FO, TFLO, TFHI, NUM
DOUBLE PRECISION ZEROR(1024) , ZEROI(1024)
DOUBLE PRECISION HBESTONE(1024), BBT.IWOQO%)
INTHGER C(1024) , G(1024), A(1024)
INTEGER I,K,N,T
INTHGER DEGREE, TOTAL, MONEBEST, MIWOBEST
Cc
IF (ITYPE.NE.O0) THEN
FRINT %, '#%** NEED TO GBTAIN ZEROS FIRST ###!
RETURN
END IF
DBEGREE=NUM-1
IF (DBGREE.GT.35) THEN
FRINT *%,' !
PRINT t' ] *RANRE WARNING *HARAR?
FRINT *,' (OOMFUTATION TIME WILL EXCEED 2
BOURS'
FRINT *,' !
END IF
DO 289 I=1,DEGREE
ZEROR(I) =AMP(I)
ZEROI (1) =PHASE(I)
289 QONTINUE
TOTAL=0
N=DEGREE/ 2+2
IF ((FLOAT(N -FLOAT (DEGREE) /2.0E0) .NE.0) THEN
N=N+1
ZEROR(DBEGREB+1) =0 .0D0
Z2EROI (DEGREB+1) =0 .0D0
END IF
C
C INITIALIZE ARRAY C
C
DO 140 I.].'N
C(I)=I
140 CONTINUE
C
DO 5 K=0,N/2

PRINT *,K,' AT A TIME FOR H1'
FPRINT *,TOTAL,' COMBINATIONS TESTED SO FAR'
IF (K.HK.0) GO TO 1200
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C INITIALIZE TO BEGIN
Cc
T=1
A(l) =)
300 G(T)=C(A(T))
IF (T.H.K) GO TO 1200
A(T+1) =A(T) +1
IF (A(T+1) .EQ.(1+N)) GO TO 900
T=T¢l
GO TO 300
900 T=T-1
IF (T.EQ.0) GO TO 5
GO TO 1300
1200 CALL
FOL YREQON ( ZEROR, ZEROI, G, DEGREE, K, BBESTONE,
1 BB ESTINO, MONEBEST, MIWCBEST)
TOTAL=TOTAL+1
IF (K.K.0) GO TO S
1300 A(T)=A(T) +1
IF (A(T).H.(1+N) GO TO 900
GO TO 300
S CONTINUE
PRINT *,' #** ALL, TTERATIONS COMPLETE *##'
ERINT *, ' TOTAL COMBINATIONS = ', TOTAL
FRINT *, 'BEST DESIGN FOUND:'
PRINT *,' !
FRINT *, 'TRANSIUCER 1:'
FRINT *,' !
DO 888 L=1,MONEBEST
PRINT *' 'H(? tLy ') = +BBESTONE(L)
AMP(L) =HBESTONE (L)
PHASE(L) =0.0
888 CQONTINUE
ITYPE=-1
NUM=MONEBEST
NFFT=MONEBEST
FO=0.5
TFLO=~(NUM-1) /2.0
TFHI=(NOM-1) /2.0
CALL WRITEO
IRINT *,'
FRINT *, '"TRANSDUCER 2:°
FRINT *,' !
DO 889 L=],MIWGBEST
m .o .B(.'Lp') =! 'BMO(L)
AMP(L) =HBESTIWO(L)
PHASE(L) =0.0
889 QONTINUE
ITYPE=-1
NOM=MIWCB EST
NFFT=MIWCBEST
FO=0.5
TFLO=-(NUM-1) /2.0
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TFHI= (NUM-1) /2.0
CALL WRITEO
FRINT *%,' '
RETURN
END
Cc
SUBROUTINE FOL YRECQON ( ZEROR, ZEROI, G, DEGREE, K, HBESTONE,
1 BBESTIWO, MONEBEST, MIWGBEST)
o
C SUBROUTINE TO FORM H1 AND H2
Cc
DOUBLE PRECISION ZEROR(1024) ,ZEROX(1024)
DOUBLE FRECISION AONE(1024), ATWO(1024), B(3)
DOUBLE PRECISION (ONE(1024) , CIWO(1024)
DOUBLE PRECISION BONE(1024) , HFIWO(1024) , HMAX, BMIN
DOUBLE PRECISION HBESTONE(1024) , BBESTIWO(1024)
DOUBLE FRECISION FOM, FOMOLD, FOMONE, FOMIWO, AA, BB
DOUBLE PRECISION FRAT, BOIB(IOZO
INTHGER G(1024)
INTEGER DEGREE, K, ZQOUNT, GQOUNT, II, JJ, JJJ
INTEGER MONE, MIWO, MONEBEST, MIWCBEST
Cc
C GBTAIN hl AND h2
Cc
MONE=0
MIWO=0
DO 11 I=1,1025
AONE(L) =0.0D0
ATWO(L) =0.0D0
11 QONTINUE
C
C SELECT A ZERO
C
ZQOUNT=1
GQOUNT=1
DO 5000 JJ=1,DEGREE
AP=ZEROR(JJ)
BB=ZEROI (JJ)
o
C IF IMAG PART IS VERY SMALL, LET THIS BE A LINEAR FACIOR
Cc
IF (DABS(BB) .LT.1.0D-10) BB=0.0D0
C
C IF IT IS THE (OMPLEX OQONJUGATE ROOT (I.E. IMAG PART
NEGATIVE)
C THEN SKIP IT, SINCE IT WILL GET PICKED UP BY THE
FOSITIVE
C IMMG QUADRATIC FACIOR.

C
IF (BB.LT.0.0D0) GO TO 5000
C
C CREATE A QUADRATIC FACTOR FROM A COMFLEX SET OF ROOTS,
R
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C A LINEAR FACIOR FROM A REAL ROOT.
C
B(1) =sAA*ANBB*BB
IF (BB.K.0.0D0) B(1l)=-AA
B(2)=-2.0D0*AA
IF (BB.H).0.0D0) B(2)=1.0D0
B(3)=1.0D0
IF (BB.H.0.0D0) B(3)=0.0D0
C
C FOR THE SPECIAL CASE OF THE ENTIRE TRANSFER FUNCTION ON
C ONE TRANSDUCER ONLY, LET hl BE AN IMFULSE (=1).
Cc
IF (K.|R.0) THEN
MONB=1
HONE(1) =1.0D0
END IF

IF (GQDUNT.GT.K) GO TO 232

INQORFORATE THE LINEAR OGR QUADRATIC FACIOR INTO THE
hl POLYNCMIAL

o Yo KeXe NN ¢!

IF (ZCOUNT. R).G(GQOUNT)) THEN
CALL
FOLYMULT (MONE, AONE, B, CONE, ZQOUNT, GQOUNT', BB, BONE)
GQOUNT=GQOUNT+1 ' '
GO TO 5000
END IF
Cc
C INCORFORATE THE LINEAR OR QUADRATIC FACTOR INTO THE
C h2 FOLYNCMIAL
C
232 IP (ZQDUNT.NE.G(GCOUNT)) THEN
CALL
FOLYMULT (MIWO, ATWO, B, CIWO, ZQOUNT, GODUNT ', BB, HIWO)
END IF |
C
5000 CQONTINUE
C
C SCALE THE QOEFFICIENTS TO MAXIMOM OF 1
C
HMAX=0 .0DO
DO 96 L=1,MONE
IF (DABS(BONE(L)) .GT.BMAX) HMAX=DABS(BONE(L))
96 OONTINUE '
DO 97 L=1,MONE
HONE (L) =HONE (L) /BMAX
97 CQONTINUE
HMAX=0 .0DO
DO 98 L=1,MIWO
IF (DABS(HIWO(L)) .GT.BMAX) HMAX=DABS(HIWO(L))
98 CONTINUE
DO 99 L=1,MIWO
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HIWO(L) =HTWO(L) /HMAX
99 CONTINUE
Cc
C DETERMINE THE FIGURE OF MERIT FOR THE DESIGN
C
IF (K.K.0) THEN
HONE(1) =1.0D0
FOMOLD=0 .0EO
END IF
DO 348 L=1,MONE
HBOTH (L) =HONE(L)
348 CONTINUE
DO 349 L=1+MONE, MONE+MIWO
BBOTH (L) =HIWO (L~MONE)
349 QONTINUE
CALL HSTATS (BBOTH, MONE+-MIWO, FOM)
C
C IF THIS IS THE BEST DESIGN RELATIVE TO ALL PAST ONES,
C SAVE THE RESULIS.
C
IF (FOM.GT.FOMOLD) THEN
PRINT *,'** BEST YET FOLLONS **'
FOMOLD=FOM
MONEB EST=MONE
MIWCBEST=MIWO
PRINT *,'FOM=',FOM,' K=',K
DO 111 II=1,MNE
BBESTONE (II)=BONE(II)
111 QONTINUE
DO 2222 II=1,MIWO
BBESTTWO(II) =HIWO(II)
2222 CQONTINUE
C
C OPTIONAL (OLE TO FROVIIE SPECIFIC INFORMATION CONCERNING

IO 1234 II=1,DEGREE

AN=ZEROR (11)

BB=ZEROI (I1)

IP (DABS(BB).LT.1.0D-10) BBe0.0DO

IF (BB.LT.0.0D0) GO TO 1234

IF (GODUNT.GT.K) GO TO 217

IF (ZCOUNT.R).G(GCOUNT)) THEN
PRINT *,'HL ZERO:',AA,' +/-',BB
AR=DABS(1.0D0-DSQRT (AA*AA+BBBB) )
IF (AA.LT.1.0D—4) PRINT *,'STOFBAND'
IF (AA.GE.1.0D—~4) PRINT *,'PASSBAND'
IF (BB.H).0.0D0) PRINT *,'REAL'
FRINT *,'
ZCOUNT=ZCOUNT* 1

o000 000
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c GQOUNT=GQOUNT+1
c GO TO 1234
c END IF
c 217 IF (ZQDUNT.NE.G(GCOUNT)) THEN
C mINT *"m ZERO:',M,' +/-.'m
c AA=DABS(1.0D0-DSQRT (AA*AA+BB*BB) )
C IF (AA.LT.1.0D~4) PRINT *,'STOPBAND'
c IF (AA.GE.1.0D~4) PRINT *, 'PASSBAND'
c IF (BB.H.0.0D0) PRINT *,'REAL'
c PRINT %,' !
c ZQOUNT=ZQOUNT+1
c END IF
c 1234 (ONTINUE
END IF
C
RETURN
C
END
C
SUBROUTINE HSTATS(X, M, FOM)
C

C THIS SUBROUTINE DETERMINES THE STATISTICS OF THE SAMPLES
C AND RETURNS THE FIGURE OF MERIT (FOM)
C
DOUBLE PRECISION X(1024), XMAX, XMIN, XAVG, XVAR
DOUBLE FRECISION FOM, XSUM, XDUM, XRANGE
INTHGER M
XSUM=0 .0D0
XMAX=(0 .0D0
XMIN=1.0D20
XDUM=0.0D0
DO 10 I=1,M
XDUM=XDUM+X (I) *X (1)
XSUM=XSUM+DABS(X (1))
IF (DABS(X(I)) .GT.XMAX) XMAX=DABS(X(I))
IF (X(I).H.0.0D0) GO TO 10
IF (DABS(X(I)).LT.XMIN) XMIN=DABS(X(I))
10 CONTINUE ‘
XAVG=XSUM/TBLE (M)
XVAR= (DBLE (M) *XDUM-XSUM*XSUM) / (DBLE(M) * (DBLE(M) -
1.0D0))
XRANG B=XMAX-XMIN
IF (XVAR.H).0.0D0) XVAR=1.0D-10
FOM=XAVG/ (XRANGE*XVAR)
35 RETURN
END
o
C FOLYNCMIAL RECONSTTIUTION SUBROUTINE. THIS ROUTINE TAKES
C THE LINEAR OR QUADRATIC FACTOR AND MULTIPLIES IT BY THE
CQURRENT
C PFOL.NQOMIAL.
C
SUBROUTINE FOLYMULT (M, A, B, C, ZQOUNT, GGQOUNT, BB, H)
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DOUBLE FRECISION A(1024), B(3),H(1024)
DOUBLE FRECISION C(1024), BB
INTEGER ZCQOUNT, M
IF NO CURRENT FOLYNQMIAL YET EXISTS, THEN THE FACITOR
THE QURRENT FOLYNCMIAL.

IF (M.K.0) THEN

DO 1002 L=1,3
A(L)=B(L)
C(L)=B(L)
1002 CONTINUE
M=1
GO T0 1421
END IF
C
C IF THE QURRENT FOLYNCMIAL IS OF ORDER GREATER THAN
THREE, THE '
C REQURSIVE RELATTONSHIP APPLIES.
C
IF (M.GT.3) THEN
DO 1001 I=3,M
C(L) =B(3) *A(L~2)
C(L) =C(L) +4B(2) *A(L~1)
C(L) =C(L) +B(1) *A(L)
1001 QONTINUE
END IF
C

C IUE TO VARIABLE ADIRESSING LIMITATIONS, TAKE CARE OF THE
WO '
C HIGH ORDER AND THREE LOWEST ORDER (OEFFICIENTS MANUALLY
C
C(M+2) =B(3) *A (M)
C(M+1) =B(3) *A (M-1) 4B(2) *A (M)
C(3)=B(3) *A(1) +B(2) *A(2) +B(1) *A(3)
C(2)=B(2) *A(1) +B(1) *A(2)
C(1)=B(1) *A(1)
C
C UPDATE THE NUMBER OF ZEROS USED.
C
1421 ZQOUNT=ZCQOUNT+1
C
C ORDER INCREASES BY TWO FOR A QUADRATIC FACIOR, ONE FOR A
C LINEAR FACIOR.

Cc
IF (BB.NE.0.0DO) M=M+2
IF (BB.M.0.0D0) M=M+l

ESTABLISH THE NB4 QURRENT POLYNOMIAL
AND THE NEW IMPULSE RESFONSE

OOnnon

DO 131 L=1,M




A(L)=C(L)
H(L) =C(L)
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